From daf46856eb250c152f9a83311928eafb2484b624 Mon Sep 17 00:00:00 2001 From: shark Date: Mon, 19 Nov 2018 17:01:42 +0000 Subject: [PATCH] beautify code and add a few fixes --- acrylic-art-code/acrylic-art-code.ino | 91 ++++++++++++++------------- 1 file changed, 46 insertions(+), 45 deletions(-) diff --git a/acrylic-art-code/acrylic-art-code.ino b/acrylic-art-code/acrylic-art-code.ino index f37747c..9c3a0f0 100644 --- a/acrylic-art-code/acrylic-art-code.ino +++ b/acrylic-art-code/acrylic-art-code.ino @@ -1,4 +1,4 @@ -#include +#include < FastLED.h > int light = 0; int r = 9; // define pins int g = 10; @@ -6,40 +6,41 @@ int b = 11; int oldavg = 0; void setup() { Serial.begin(9600); + pinMode(13, OUTPUT); } void loop() { int ss = 20; // sample size for light sensor int average = 0; - for (int x = 0; x < ss; x++) { + for (int x = 0; x < ss; x++) { //average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization - + //linearization using resistance to lux relationship - average += (1250000.0 * pow(1023-analogRead(0), -1.4059) - 73) / 2.08; + average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08; delay(3); } average /= ss; //Serial.println(average); - if(oldavg == 0) { - oldavg = average; - } + if (oldavg == 0) { + oldavg = average; + } digitalWrite(13, HIGH); - if(oldavg != average) { - Serial.print("Goal: "); - Serial.println(average); + if (oldavg != average) { + Serial.print("Goal: "); + Serial.println(average); } - while(oldavg < average) { - oldavg += 1; - setColor(oldavg); + while (oldavg < average) { + oldavg += 1; + setColor(oldavg); } - while(oldavg > average) { - oldavg -= 1; - setColor(oldavg); + while (oldavg > average) { + oldavg -= 1; + setColor(oldavg); } digitalWrite(13, LOW); - } - - void setColor(int hue) { +} + +void setColor(int hue) { CRGB color = CHSV(hue, 255, 255); analogWrite(9, color.r); analogWrite(10, color.g); @@ -58,7 +59,7 @@ void loop() { /*// Library free version for regular RGB LEDs (tinkercad), using HSV --> RGB code not by me - //#include +//#include < FastLED.h > int light = 0; int oldavg = 0; void setup() { @@ -69,49 +70,49 @@ void setup() { void loop() { int ss = 20; // sample size for light sensor int average = 0; - for (int x = 0; x < ss; x++) { + for (int x = 0; x < ss; x++) { //average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization - + //linearization using resistance to lux relationship - average += (1250000.0 * pow(1023-analogRead(0), -1.4059) - 73) / 2.08; + average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08; delay(3); } average /= ss; //Serial.println(average); - if(oldavg == 0) { - oldavg = average; - } + if (oldavg == 0) { + oldavg = average; + } digitalWrite(13, HIGH); - if(oldavg != average) { - Serial.print("Goal: "); - Serial.println(average); + if (oldavg != average) { + Serial.print("Goal: "); + Serial.println(average); } - while(oldavg < average) { - oldavg += 1; - setColor(oldavg); + while (oldavg < average) { + oldavg += 1; + setColor(oldavg); } - while(oldavg > average) { - oldavg -= 1; - setColor(oldavg); + while (oldavg > average) { + oldavg -= 1; + setColor(oldavg); } digitalWrite(13, LOW); - } - void SetColor(int hue) { +} +void SetColor(int hue) { byte RedLight; -byte GreenLight; -byte BlueLight; + byte GreenLight; + byte BlueLight; // this is the algorithm to convert from RGB to HSV byte h = hue; byte s = 255; byte v = 60; - h = (h * 192) / 256; // ..191 - unsigned int i = h / 32; // We want a value of 0 thru 5 - unsigned int f = (h % 32) * 8; // 'fractional' part of 'i' 0..248 in jumps + h = (h * 192) / 256; // 0..191 + unsigned int i = h / 32; // We want a value of 0 thru 5 + unsigned int f = (h % 32) * 8; // 'fractional' part of 'i' 0..248 in jumps - unsigned int sInv = 255 - s; // 0 -> 0xff, 0xff -> 0 - unsigned int fInv = 255 - f; // 0 -> 0xff, 0xff -> 0 - byte pv = v * sInv / 256; // pv will be in range 0 - 255 + unsigned int sInv = 255 - s; // 0 -> 0xff, 0xff -> 0 + unsigned int fInv = 255 - f; // 0 -> 0xff, 0xff -> 0 + byte pv = v * sInv / 256; // pv will be in range 0 - 255 byte qv = v * (256 - s * f / 256) / 256; byte tv = v * (256 - s * fInv / 256) / 256;