#!python # # 2021 Zhengyu Peng # Website: https://zpeng.me # # ` ` # -:. -#: # -//:. -###: # -////:. -#####: # -/:.://:. -###++##: # .. `://:- -###+. :##: # `:/+####+. :##: # .::::::::/+###. :##: # .////-----+##: `:###: # `-//:. :##: `:###/. # `-//:. :##:`:###/. # `-//:+######/. # `-/+####/. # `+##+. # :##: # :##: # :##: # :##: # :##: # .+: # Libraries # https://circuitpython.readthedocs.io/projects/servokit/en/latest/ from adafruit_servokit import ServoKit from leg import Leg from queue import Queue, Empty # python3-numpy import numpy as np import time import json from path_generator import gen_forward_path, gen_backward_path from path_generator import gen_fastforward_path, gen_fastbackward_path from path_generator import gen_leftturn_path, gen_rightturn_path from path_generator import gen_shiftleft_path, gen_shiftright_path from path_generator import gen_climb_path from path_generator import gen_rotatex_path, gen_rotatey_path, gen_rotatez_path from path_generator import gen_twist_path import socket import errno from threading import Thread from tcpserver import TCPServer class Hexapod(Thread): def __init__(self, in_cmd_queue): Thread.__init__(self) self.cmd_queue = in_cmd_queue self.interval = 0.005 # x -> right # y -> front # z -> up # origin is the center of the body # roots are the positions of the bottom screws # length units are in mm # time units are in ms with open('./config.json', 'r') as read_file: self.config = json.load(read_file) self.mount_x = np.array(self.config['legMountX']) self.mount_y = np.array(self.config['legMountY']) self.root_j1 = self.config['legRootToJoint1'] self.j1_j2 = self.config['legJoint1ToJoint2'] self.j2_j3 = self.config['legJoint2ToJoint3'] self.j3_tip = self.config['legJoint3ToTip'] self.mount_angle = np.array(self.config['legMountAngle'])/180*np.pi self.mount_position = np.zeros((6, 3)) self.mount_position[:, 0] = self.mount_x self.mount_position[:, 1] = self.mount_y # Objects self.pca_right = ServoKit(channels=16, address=0x40, frequency=120) self.pca_left = ServoKit(channels=16, address=0x41, frequency=120) # front right self.leg_0 = Leg(0, [self.pca_left.servo[15], self.pca_left.servo[2], self.pca_left.servo[1]], correction=[4, 6, 2]) # center right self.leg_1 = Leg(1, [self.pca_left.servo[7], self.pca_left.servo[8], self.pca_left.servo[6]], correction=[0, 8, -6]) # rear right self.leg_2 = Leg(2, [self.pca_left.servo[0], self.pca_left.servo[14], self.pca_left.servo[13]], correction=[2, 8, -1]) # rear left self.leg_3 = Leg(3, [self.pca_right.servo[15], self.pca_right.servo[1], self.pca_right.servo[2]], correction=[-3, 10, -8]) # center left self.leg_4 = Leg(4, [self.pca_right.servo[7], self.pca_right.servo[6], self.pca_right.servo[8]], correction=[-6, 2, -4]) # front left self.leg_5 = Leg(5, [self.pca_right.servo[0], self.pca_right.servo[13], self.pca_right.servo[14]], correction=[0, 0, -10]) # self.leg_0.reset(True) # self.leg_1.reset(True) # self.leg_2.reset(True) # self.leg_3.reset(True) # self.leg_4.reset(True) # self.leg_5.reset(True) self.standby_coordinate = self.calculate_standby_coordinate(60, 75) self.forward_path = gen_forward_path(self.standby_coordinate) self.backward_path = gen_backward_path(self.standby_coordinate) self.fastforward_path = gen_fastforward_path(self.standby_coordinate) self.fastbackward_path = gen_fastbackward_path(self.standby_coordinate) self.leftturn_path = gen_leftturn_path(self.standby_coordinate) self.rightturn_path = gen_rightturn_path(self.standby_coordinate) self.shiftleft_path = gen_shiftleft_path(self.standby_coordinate) self.shiftright_path = gen_shiftright_path(self.standby_coordinate) self.climb_path = gen_climb_path(self.standby_coordinate) self.rotatex_path = gen_rotatex_path(self.standby_coordinate) self.rotatey_path = gen_rotatey_path(self.standby_coordinate) self.rotatez_path = gen_rotatez_path(self.standby_coordinate) self.twist_path = gen_twist_path(self.standby_coordinate) self.current_motion = None self.standby() time.sleep(1) # self.leg_0.set_angle(1, 30) # for mm in range(0, 10): # self.move(self.forward_path) # for mm in range(0, 10): # self.move(self.backward_path, 0.005) # for mm in range(0, 10): # self.move(self.fastforward_path, 0.005) # for mm in range(0, 10): # self.move(self.fastbackward_path, 0.005) # for mm in range(0, 10): # self.move(self.leftturn_path, 0.005) # for mm in range(0, 10): # self.move(self.rightturn_path, 0.005) # for mm in range(0, 10): # self.move(self.shiftleft_path, 0.005) # for mm in range(0, 10): # self.move(self.shiftright_path, 0.005) # for mm in range(0, 10): # self.move(self.climb_path, 0.005) # for mm in range(0, 10): # self.move(self.rotatex_path, 0.005) # for mm in range(0, 10): # self.move(self.rotatey_path, 0.005) # for mm in range(0, 10): # self.move(self.rotatez_path, 0.005) # for mm in range(0, 10): # self.move(self.twist_path, 0.005) # time.sleep(1) # self.standby() def calculate_standby_coordinate(self, j2_angle, j3_angle): j2_rad = j2_angle/180*np.pi j3_rad = j3_angle/180*np.pi standby_coordinate = np.zeros((6, 3)) standby_coordinate[:, 0] = self.mount_x+(self.root_j1+self.j1_j2+( self.j2_j3*np.sin(j2_rad))+self.j3_tip*np.cos(j3_rad))*np.cos(self.mount_angle) standby_coordinate[:, 1] = self.mount_y + (self.root_j1+self.j1_j2+( self.j2_j3*np.sin(j2_rad))+self.j3_tip*np.cos(j3_rad))*np.sin(self.mount_angle) standby_coordinate[:, 2] = self.j2_j3 * \ np.cos(j2_rad) - self.j3_tip * \ np.sin(j3_rad) return standby_coordinate def calculate_sit_coordinate(self, standby_coordinate): sit_coordinate = np.zeros_like(standby_coordinate) sit_coordinate[:, 0:2] = standby_coordinate[:, 0:2] return sit_coordinate def move(self, path): for p_idx in range(0, np.shape(path)[0]): dest = path[p_idx, :, :] angles = self.inverse_kinematics(dest) self.leg_0.move_junctions(angles[0, :]) self.leg_5.move_junctions(angles[5, :]) self.leg_1.move_junctions(angles[1, :]) self.leg_4.move_junctions(angles[4, :]) self.leg_2.move_junctions(angles[2, :]) self.leg_3.move_junctions(angles[3, :]) time.sleep(self.interval) def move_routine(self, path): for p_idx in range(0, np.shape(path)[0]): dest = path[p_idx, :, :] angles = self.inverse_kinematics(dest) self.leg_0.move_junctions(angles[0, :]) self.leg_5.move_junctions(angles[5, :]) self.leg_1.move_junctions(angles[1, :]) self.leg_4.move_junctions(angles[4, :]) self.leg_2.move_junctions(angles[2, :]) self.leg_3.move_junctions(angles[3, :]) try: data = self.cmd_queue.get(block=False) print('interrput') print(data) except Empty: time.sleep(self.interval) pass else: if data == 'standby': self.current_motion = None self.standby() elif data == 'forward': self.current_motion = self.forward_path elif data == 'backward': self.current_motion = self.backward_path elif data == 'fastforward': self.current_motion = self.fastforward_path elif data == 'fastbackward': self.current_motion = self.fastbackward_path elif data == 'leftturn': self.current_motion = self.leftturn_path elif data == 'rightturn': self.current_motion = self.rightturn_path elif data == 'shiftleft': self.current_motion = self.shiftleft_path elif data == 'shiftright': self.current_motion = self.shiftright_path elif data == 'climb': self.current_motion = self.climb_path elif data == 'rotatex': self.current_motion = self.rotatex_path elif data == 'rotatey': self.current_motion = self.rotatey_path elif data == 'rotatez': self.current_motion = self.rotatez_path elif data == 'twist': self.current_motion = self.twist_path else: self.current_motion = None self.cmd_queue.task_done() break def standby(self): dest = self.standby_coordinate angles = self.inverse_kinematics(dest) self.leg_0.move_junctions(angles[0, :]) self.leg_5.move_junctions(angles[5, :]) self.leg_1.move_junctions(angles[1, :]) self.leg_4.move_junctions(angles[4, :]) self.leg_2.move_junctions(angles[2, :]) self.leg_3.move_junctions(angles[3, :]) def inverse_kinematics(self, dest): temp_dest = dest-self.mount_position local_dest = np.zeros_like(dest) local_dest[:, 0] = temp_dest[:, 0] * \ np.cos(self.mount_angle) + \ temp_dest[:, 1] * np.sin(self.mount_angle) local_dest[:, 1] = temp_dest[:, 0] * \ np.sin(self.mount_angle) - \ temp_dest[:, 1] * np.cos(self.mount_angle) local_dest[:, 2] = temp_dest[:, 2] angles = np.zeros((6, 3)) x = local_dest[:, 0] - self.root_j1 y = local_dest[:, 1] angles[:, 0] = -(np.arctan2(y, x) * 180 / np.pi)+90 x = np.sqrt(x*x + y*y) - self.j1_j2 y = local_dest[:, 2] ar = np.arctan2(y, x) lr2 = x*x + y*y lr = np.sqrt(lr2) a1 = np.arccos((lr2 + self.j2_j3*self.j2_j3 - self.j3_tip*self.j3_tip)/(2*self.j2_j3*lr)) a2 = np.arccos((lr2 - self.j2_j3*self.j2_j3 + self.j3_tip*self.j3_tip)/(2*self.j3_tip*lr)) angles[:, 1] = 90-((ar + a1) * 180 / np.pi) angles[:, 2] = (90 - ((a1 + a2) * 180 / np.pi))+90 return angles def run(self): while True: if self.current_motion is None: try: data = self.cmd_queue.get(block=False) print(data) except Empty: time.sleep(self.interval) pass else: if data == 'standby': self.current_motion = None self.standby() elif data == 'forward': self.current_motion = self.forward_path elif data == 'backward': self.current_motion = self.backward_path elif data == 'fastforward': self.current_motion = self.fastforward_path elif data == 'fastbackward': self.current_motion = self.fastbackward_path elif data == 'leftturn': self.current_motion = self.leftturn_path elif data == 'rightturn': self.current_motion = self.rightturn_path elif data == 'shiftleft': self.current_motion = self.shiftleft_path elif data == 'shiftright': self.current_motion = self.shiftright_path elif data == 'climb': self.current_motion = self.climb_path elif data == 'rotatex': self.current_motion = self.rotatex_path elif data == 'rotatey': self.current_motion = self.rotatey_path elif data == 'rotatez': self.current_motion = self.rotatez_path elif data == 'twist': self.current_motion = self.twist_path else: self.current_motion = None self.cmd_queue.task_done() if self.current_motion is not None: self.move_routine(self.current_motion) def main(): q = Queue() tcp_server = TCPServer(q) tcp_server.start() hexapod = Hexapod(q) hexapod.start() if __name__ == '__main__': main()