#!python # # 2021 Zhengyu Peng # Website: https://zpeng.me # # ` ` # -:. -#: # -//:. -###: # -////:. -#####: # -/:.://:. -###++##: # .. `://:- -###+. :##: # `:/+####+. :##: # .::::::::/+###. :##: # .////-----+##: `:###: # `-//:. :##: `:###/. # `-//:. :##:`:###/. # `-//:+######/. # `-/+####/. # `+##+. # :##: # :##: # :##: # :##: # :##: # .+: from lib import semicircle_generator, semicircle2_generator from lib import path_rotate_z from lib import get_rotate_x_matrix, get_rotate_y_matrix, get_rotate_z_matrix import numpy as np def gen_walk_path(standby_coordinate, g_steps=20, g_radius=35, direction=0): assert (g_steps % 4) == 0 halfsteps = int(g_steps/2) semi_circle = semicircle_generator(g_radius, g_steps) semi_circle = np.array(path_rotate_z(semi_circle, direction)) mir_path = np.roll(semi_circle, halfsteps, axis=0) path = np.zeros((g_steps, 6, 3)) path[:, [0, 2, 4], :] = np.tile(semi_circle[:, np.newaxis, :], (1, 3, 1)) path[:, [1, 3, 5], :] = np.tile(mir_path[:, np.newaxis, :], (1, 3, 1)) return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)), 'type': 'motion'} def gen_fastwalk_path(standby_coordinate, g_steps=20, y_radius=50, z_radius=30, x_radius=10, reverse=False): assert (g_steps % 2) == 0 halfsteps = int(g_steps/2) path = np.zeros((g_steps, 6, 3)) semi_circle_r = semicircle2_generator( g_steps, y_radius, z_radius, x_radius, reverse=reverse) semi_circle_l = semicircle2_generator( g_steps, y_radius, z_radius, -x_radius, reverse=reverse) path[:, [0, 2], :] = np.tile(semi_circle_r[:, np.newaxis, :], (1, 2, 1)) path[:, 1, :] = np.roll(semi_circle_r, halfsteps, axis=0) path[:, 4, :] = semi_circle_l path[:, [3, 5], :] = np.tile( np.roll(semi_circle_l[:, np.newaxis, :], halfsteps, axis=0), (1, 2, 1)) return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)), 'type': 'motion'} def gen_turn_path(standby_coordinate, g_steps=20, g_radius=35, direction='left'): assert (g_steps % 4) == 0 halfsteps = int(g_steps/2) path = np.zeros((g_steps, 6, 3)) semi_circle = semicircle_generator(g_radius, g_steps) mir_path = np.roll(semi_circle, halfsteps, axis=0) if direction == 'left': path[:, 0, :] = path_rotate_z(semi_circle, 45) path[:, 1, :] = path_rotate_z(mir_path, 0) path[:, 2, :] = path_rotate_z(semi_circle, 315) path[:, 3, :] = path_rotate_z(mir_path, 225) path[:, 4, :] = path_rotate_z(semi_circle, 180) path[:, 5, :] = path_rotate_z(mir_path, 135) elif direction == 'right': path[:, 0, :] = path_rotate_z(semi_circle, 45+180) path[:, 1, :] = path_rotate_z(mir_path, 0+180) path[:, 2, :] = path_rotate_z(semi_circle, 315+180) path[:, 3, :] = path_rotate_z(mir_path, 225+180) path[:, 4, :] = path_rotate_z(semi_circle, 180+180) path[:, 5, :] = path_rotate_z(mir_path, 135+180) return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)), 'type': 'motion'} def gen_climb_path(standby_coordinate, g_steps=20, y_radius=20, z_radius=80, x_radius=30, z_shift=-30, reverse=False): assert (g_steps % 4) == 0 halfsteps = int(g_steps/2) rpath = semicircle2_generator( g_steps, y_radius, z_radius, x_radius, reverse=reverse) rpath[:, 2] = rpath[:, 2]+z_shift lpath = semicircle2_generator( g_steps, y_radius, z_radius, -x_radius, reverse=reverse) lpath[:, 2] = lpath[:, 2]+z_shift mir_rpath = np.roll(rpath, halfsteps, axis=0) mir_lpath = np.roll(lpath, halfsteps, axis=0) path = np.zeros((g_steps, 6, 3)) path[:, 0, :] = rpath path[:, 1, :] = mir_rpath path[:, 2, :] = rpath path[:, 3, :] = mir_lpath path[:, 4, :] = lpath path[:, 5, :] = mir_lpath return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)), 'type': 'motion'} def gen_rotatex_path(standby_coordinate, g_steps=20, swing_angle=15, y_radius=15): assert (g_steps % 4) == 0 quarter = int(g_steps/4) path = np.zeros((g_steps, 6, 3)) step_angle = swing_angle / quarter step_offset = y_radius / quarter scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1) for i in range(quarter): m = get_rotate_x_matrix(swing_angle - i*step_angle) m[1, 3] = -i * step_offset path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] for i in range(quarter): m = get_rotate_x_matrix(-i*step_angle) m[1, 3] = -y_radius + i * step_offset path[i+quarter, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] for i in range(quarter): m = get_rotate_x_matrix(i*step_angle-swing_angle) m[1, 3] = i * step_offset path[i+quarter*2, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] for i in range(quarter): m = get_rotate_x_matrix(i*step_angle) m[1, 3] = y_radius-i * step_offset path[i+quarter*3, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] return {'coord': path, 'type': 'motion'} def gen_rotatey_path(standby_coordinate, g_steps=20, swing_angle=15, x_radius=15): assert (g_steps % 4) == 0 quarter = int(g_steps/4) path = np.zeros((g_steps, 6, 3)) step_angle = swing_angle / quarter step_offset = x_radius / quarter scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1) for i in range(quarter): m = get_rotate_y_matrix(swing_angle - i*step_angle) m[1, 3] = -i * step_offset path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] for i in range(quarter): m = get_rotate_y_matrix(-i*step_angle) m[1, 3] = -x_radius + i * step_offset path[i+quarter, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] for i in range(quarter): m = get_rotate_y_matrix(i*step_angle-swing_angle) m[1, 3] = i * step_offset path[i+quarter*2, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] for i in range(quarter): m = get_rotate_y_matrix(i*step_angle) m[1, 3] = x_radius-i * step_offset path[i+quarter*3, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] return {'coord': path, 'type': 'motion'} def gen_rotatez_path(standby_coordinate, g_steps=20, z_lift=4.5, xy_radius=1): assert (g_steps % 4) == 0 path = np.zeros((g_steps, 6, 3)) step_angle = 2*np.pi / g_steps scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1) for i in range(g_steps): x = xy_radius * np.cos(i*step_angle) y = xy_radius * np.sin(i*step_angle) m = get_rotate_y_matrix(np.arctan2(x, z_lift)*180/np.pi) * \ get_rotate_x_matrix(np.arctan2(y, z_lift)*180/np.pi) path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1] return {'coord': path, 'type': 'motion'} def gen_twist_path(standby_coordinate, g_steps=20, raise_angle=3, twist_x_angle=20, twise_y_angle=12): assert (g_steps % 4) == 0 quarter = int(g_steps / 4) step_x_angle = twist_x_angle / quarter step_y_angle = twise_y_angle / quarter scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1) m = get_rotate_x_matrix(raise_angle) path = np.zeros((g_steps, 6, 3)) for i in range(quarter): temp = m * get_rotate_z_matrix(i*step_x_angle) * \ get_rotate_x_matrix(i*step_y_angle) path[i, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1] for i in range(quarter): temp = m * get_rotate_z_matrix((quarter-i)*step_x_angle) * \ get_rotate_x_matrix((quarter-i)*step_y_angle) path[i+quarter*1, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1] for i in range(quarter): temp = m * get_rotate_z_matrix(-i*step_x_angle) * \ get_rotate_x_matrix(i*step_y_angle) path[i+quarter*2, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1] for i in range(quarter): temp = m * get_rotate_z_matrix((-quarter+i)*step_x_angle) * \ get_rotate_x_matrix((quarter-i)*step_y_angle) path[i+quarter*3, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1] return {'coord': path, 'type': 'motion'}