You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

232 lines
7.9 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Libraries
# https://circuitpython.readthedocs.io/projects/servokit/en/latest/
from adafruit_servokit import ServoKit
from leg import Leg
# python3-numpy
import numpy as np
import time
import json
from path_generator import gen_forward_path, gen_backward_path
from path_generator import gen_fastforward_path, gen_fastbackward_path
from path_generator import gen_leftturn_path, gen_rightturn_path
from path_generator import gen_shiftleft_path, gen_shiftright_path
from path_generator import gen_climb_path
from path_generator import gen_rotatex_path, gen_rotatey_path, gen_rotatez_path
from path_generator import gen_twist_path
SIN30 = 0.5
COS30 = 0.866
SIN45 = 0.7071
COS45 = 0.7071
SIN15 = 0.2588
COS15 = 0.9659
class Hexapod:
def __init__(self):
# x -> right
# y -> front
# z -> up
# origin is the center of the body
# roots are the positions of the bottom screws
# length units are in mm
# time units are in ms
with open('./config.json', 'r') as read_file:
self.config = json.load(read_file)
self.mount_x = np.array(self.config['legMountX'])
self.mount_y = np.array(self.config['legMountY'])
self.root_j1 = self.config['legRootToJoint1']
self.j1_j2 = self.config['legJoint1ToJoint2']
self.j2_j3 = self.config['legJoint2ToJoint3']
self.j3_tip = self.config['legJoint3ToTip']
self.mount_angle = np.array(self.config['legMountAngle'])/180*np.pi
self.mount_position = np.zeros((6, 3))
self.mount_position[:, 0] = self.mount_x
self.mount_position[:, 1] = self.mount_y
# Objects
self.pca_right = ServoKit(channels=16, address=0x40, frequency=120)
self.pca_left = ServoKit(channels=16, address=0x41, frequency=120)
# front right
self.leg_0 = Leg(0,
[self.pca_left.servo[15], self.pca_left.servo[2],
self.pca_left.servo[1]],
correction=[-6, 4, -6])
# center right
self.leg_1 = Leg(1,
[self.pca_left.servo[7], self.pca_left.servo[8],
self.pca_left.servo[6]],
correction=[3, -5, -6])
# rear right
self.leg_2 = Leg(2,
[self.pca_left.servo[0], self.pca_left.servo[14],
self.pca_left.servo[13]],
correction=[3, -6, -5])
# rear left
self.leg_3 = Leg(3,
[self.pca_right.servo[15], self.pca_right.servo[1],
self.pca_right.servo[2]],
correction=[-3, -4, 6])
# center left
self.leg_4 = Leg(4,
[self.pca_right.servo[7], self.pca_right.servo[6],
self.pca_right.servo[8]],
correction=[-6, 2, 0])
# front left
self.leg_5 = Leg(5,
[self.pca_right.servo[0], self.pca_right.servo[13],
self.pca_right.servo[14]],
correction=[-6, 4, 0])
self.standby_coordinate = self.calculate_standby_coordinate(60, 75)
self.forward_path = gen_forward_path(self.standby_coordinate)
self.backward_path = gen_backward_path(self.standby_coordinate)
self.fastforward_path = gen_fastforward_path(self.standby_coordinate)
self.fastbackward_path = gen_fastbackward_path(self.standby_coordinate)
self.leftturn_path = gen_leftturn_path(self.standby_coordinate)
self.rightturn_path = gen_rightturn_path(self.standby_coordinate)
self.shiftleft_path = gen_shiftleft_path(self.standby_coordinate)
self.shiftright_path = gen_shiftright_path(self.standby_coordinate)
self.climb_path = gen_climb_path(self.standby_coordinate)
self.rotatex_path = gen_rotatex_path(self.standby_coordinate)
self.rotatey_path = gen_rotatey_path(self.standby_coordinate)
self.rotatez_path = gen_rotatez_path(self.standby_coordinate)
self.twist_path = gen_twist_path(self.standby_coordinate)
self.standby()
time.sleep(1)
for mm in range(0, 20):
self.move(self.forward_path, 0.005)
for mm in range(0, 20):
self.move(self.backward_path, 0.005)
# for mm in range(0, 20):
# self.move(self.fastforward_path, 0.005)
# for mm in range(0, 20):
# self.move(self.fastbackward_path, 0.005)
# for mm in range(0, 20):
# self.move(self.leftturn_path, 0.005)
# for mm in range(0, 20):
# self.move(self.rightturn_path, 0.005)
# for mm in range(0, 20):
# self.move(self.shiftleft_path, 0.005)
# for mm in range(0, 20):
# self.move(self.shiftright_path, 0.005)
# for mm in range(0, 20):
# self.move(self.climb_path, 0.005)
# self.move(self.rotatex_path, 0.005)
for mm in range(0, 20):
self.move(self.twist_path, 0.005)
time.sleep(1)
self.standby()
def calculate_standby_coordinate(self, j2_angle, j3_angle):
j2_rad = j2_angle/180*np.pi
j3_rad = j3_angle/180*np.pi
standby_coordinate = np.zeros((6, 3))
standby_coordinate[:, 0] = self.mount_x+(self.root_j1+self.j1_j2+(
self.j2_j3*np.sin(j2_rad))+self.j3_tip*np.cos(j3_rad))*np.cos(self.mount_angle)
standby_coordinate[:, 1] = self.mount_y + (self.root_j1+self.j1_j2+(
self.j2_j3*np.sin(j2_rad))+self.j3_tip*np.cos(j3_rad))*np.sin(self.mount_angle)
standby_coordinate[:, 2] = self.j2_j3 * \
np.cos(j2_rad) - self.j3_tip * \
np.sin(j3_rad)
return standby_coordinate
def move(self, path, interval):
for p_idx in range(0, np.shape(path)[0]):
# dest = path[p_idx, :, :]+self.standby_coordinate
dest = path[p_idx, :, :]
angles = self.inverse_kinematics(dest)
self.leg_0.move_junctions(angles[0, :])
self.leg_5.move_junctions(angles[5, :])
self.leg_1.move_junctions(angles[1, :])
self.leg_4.move_junctions(angles[4, :])
self.leg_2.move_junctions(angles[2, :])
self.leg_3.move_junctions(angles[3, :])
time.sleep(interval)
def standby(self):
dest = self.standby_coordinate
angles = self.inverse_kinematics(dest)
self.leg_0.move_junctions(angles[0, :])
self.leg_5.move_junctions(angles[5, :])
self.leg_1.move_junctions(angles[1, :])
self.leg_4.move_junctions(angles[4, :])
self.leg_2.move_junctions(angles[2, :])
self.leg_3.move_junctions(angles[3, :])
def inverse_kinematics(self, dest):
temp_dest = dest-self.mount_position
local_dest = np.zeros_like(dest)
local_dest[:, 0] = temp_dest[:, 0] * \
np.cos(self.mount_angle) + \
temp_dest[:, 1] * np.sin(self.mount_angle)
local_dest[:, 1] = temp_dest[:, 0] * \
np.sin(self.mount_angle) - \
temp_dest[:, 1] * np.cos(self.mount_angle)
local_dest[:, 2] = temp_dest[:, 2]
angles = np.zeros((6, 3))
x = local_dest[:, 0] - self.root_j1
y = local_dest[:, 1]
angles[:, 0] = -(np.arctan2(y, x) * 180 / np.pi)+90
x = np.sqrt(x*x + y*y) - self.j1_j2
y = local_dest[:, 2]
ar = np.arctan2(y, x)
lr2 = x*x + y*y
lr = np.sqrt(lr2)
a1 = np.arccos((lr2 + self.j2_j3*self.j2_j3 -
self.j3_tip*self.j3_tip)/(2*self.j2_j3*lr))
a2 = np.arccos((lr2 - self.j2_j3*self.j2_j3 +
self.j3_tip*self.j3_tip)/(2*self.j3_tip*lr))
angles[:, 1] = 90-((ar + a1) * 180 / np.pi)
angles[:, 2] = (90 - ((a1 + a2) * 180 / np.pi))+90
return angles
def main():
hexapod = Hexapod()
if __name__ == '__main__':
main()