You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
9.7 KiB
Python
321 lines
9.7 KiB
Python
#!python
|
|
#
|
|
# 2021 Zhengyu Peng
|
|
# Website: https://zpeng.me
|
|
#
|
|
# ` `
|
|
# -:. -#:
|
|
# -//:. -###:
|
|
# -////:. -#####:
|
|
# -/:.://:. -###++##:
|
|
# .. `://:- -###+. :##:
|
|
# `:/+####+. :##:
|
|
# .::::::::/+###. :##:
|
|
# .////-----+##: `:###:
|
|
# `-//:. :##: `:###/.
|
|
# `-//:. :##:`:###/.
|
|
# `-//:+######/.
|
|
# `-/+####/.
|
|
# `+##+.
|
|
# :##:
|
|
# :##:
|
|
# :##:
|
|
# :##:
|
|
# :##:
|
|
# .+:
|
|
|
|
from lib import semicircle_generator, semicircle2_generator
|
|
from lib import path_rotate_z
|
|
from lib import get_rotate_x_matrix, get_rotate_y_matrix, get_rotate_z_matrix
|
|
import numpy as np
|
|
|
|
|
|
def gen_walk_path(standby_coordinate,
|
|
g_steps=20,
|
|
g_radius=25,
|
|
reverse=False):
|
|
assert (g_steps % 4) == 0
|
|
|
|
halfsteps = int(g_steps/2)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
|
|
semi_circle = semicircle_generator(g_radius, g_steps, reverse=reverse)
|
|
|
|
path[:, [0, 2, 4], :] = np.tile(semi_circle[:, np.newaxis, :], (1, 3, 1))
|
|
path[:, [1, 3, 5], :] = np.tile(
|
|
np.roll(semi_circle[:, np.newaxis, :], halfsteps, axis=0), (1, 3, 1))
|
|
|
|
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
|
|
'type': 'motion'}
|
|
|
|
|
|
def gen_fastwalk_path(standby_coordinate,
|
|
g_steps=20,
|
|
y_radius=50,
|
|
z_radius=30,
|
|
x_radius=10,
|
|
reverse=False):
|
|
assert (g_steps % 2) == 0
|
|
|
|
halfsteps = int(g_steps/2)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
semi_circle_r = semicircle2_generator(
|
|
g_steps, y_radius, z_radius, x_radius, reverse=reverse)
|
|
semi_circle_l = semicircle2_generator(
|
|
g_steps, y_radius, z_radius, -x_radius, reverse=reverse)
|
|
|
|
path[:, [0, 2], :] = np.tile(semi_circle_r[:, np.newaxis, :], (1, 2, 1))
|
|
path[:, 1, :] = np.roll(semi_circle_r, halfsteps, axis=0)
|
|
path[:, 4, :] = semi_circle_l
|
|
path[:, [3, 5], :] = np.tile(
|
|
np.roll(semi_circle_l[:, np.newaxis, :], halfsteps, axis=0), (1, 2, 1))
|
|
|
|
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
|
|
'type': 'motion'}
|
|
|
|
|
|
def gen_turn_path(standby_coordinate,
|
|
g_steps=20,
|
|
g_radius=25,
|
|
direction='left'):
|
|
assert (g_steps % 4) == 0
|
|
halfsteps = int(g_steps/2)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
|
|
semi_circle = semicircle_generator(g_radius, g_steps)
|
|
mir_path = np.roll(semi_circle, halfsteps, axis=0)
|
|
|
|
if direction == 'left':
|
|
path[:, 0, :] = path_rotate_z(semi_circle, 45)
|
|
path[:, 1, :] = path_rotate_z(mir_path, 0)
|
|
path[:, 2, :] = path_rotate_z(semi_circle, 315)
|
|
path[:, 3, :] = path_rotate_z(mir_path, 225)
|
|
path[:, 4, :] = path_rotate_z(semi_circle, 180)
|
|
path[:, 5, :] = path_rotate_z(mir_path, 135)
|
|
elif direction == 'right':
|
|
path[:, 0, :] = path_rotate_z(semi_circle, 45+180)
|
|
path[:, 1, :] = path_rotate_z(mir_path, 0+180)
|
|
path[:, 2, :] = path_rotate_z(semi_circle, 315+180)
|
|
path[:, 3, :] = path_rotate_z(mir_path, 225+180)
|
|
path[:, 4, :] = path_rotate_z(semi_circle, 180+180)
|
|
path[:, 5, :] = path_rotate_z(mir_path, 135+180)
|
|
|
|
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
|
|
'type': 'motion'}
|
|
|
|
|
|
def gen_shiftleft_path(standby_coordinate,
|
|
g_steps=20,
|
|
g_radius=25):
|
|
assert (g_steps % 4) == 0
|
|
halfsteps = int(g_steps/2)
|
|
|
|
semi_circle = semicircle_generator(g_radius, g_steps)
|
|
# shift 90 degree to make the path "left" shift
|
|
semi_circle = np.array(path_rotate_z(semi_circle, 90))
|
|
mir_path = np.roll(semi_circle, halfsteps, axis=0)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
path[:, [0, 2, 4], :] = np.tile(semi_circle[:, np.newaxis, :], (1, 3, 1))
|
|
path[:, [1, 3, 5], :] = np.tile(mir_path[:, np.newaxis, :], (1, 3, 1))
|
|
|
|
return path+np.tile(standby_coordinate, (g_steps, 1, 1))
|
|
|
|
|
|
def gen_shiftright_path(standby_coordinate,
|
|
g_steps=20,
|
|
g_radius=25):
|
|
assert (g_steps % 4) == 0
|
|
halfsteps = int(g_steps/2)
|
|
|
|
semi_circle = semicircle_generator(g_radius, g_steps)
|
|
# shift 90 degree to make the path "left" shift
|
|
semi_circle = np.array(path_rotate_z(semi_circle, 270))
|
|
mir_path = np.roll(semi_circle, halfsteps, axis=0)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
path[:, [0, 2, 4], :] = np.tile(semi_circle[:, np.newaxis, :], (1, 3, 1))
|
|
path[:, [1, 3, 5], :] = np.tile(mir_path[:, np.newaxis, :], (1, 3, 1))
|
|
|
|
return path+np.tile(standby_coordinate, (g_steps, 1, 1))
|
|
|
|
|
|
def gen_climb_path(standby_coordinate,
|
|
g_steps=20,
|
|
y_radius=20,
|
|
z_radius=80,
|
|
x_radius=30,
|
|
z_shift=-30):
|
|
assert (g_steps % 4) == 0
|
|
halfsteps = int(g_steps/2)
|
|
|
|
rpath = semicircle2_generator(g_steps, y_radius, z_radius, x_radius)
|
|
rpath[:, 2] = rpath[:, 2]+z_shift
|
|
|
|
lpath = semicircle2_generator(g_steps, y_radius, z_radius, -x_radius)
|
|
lpath[:, 2] = lpath[:, 2]+z_shift
|
|
|
|
mir_rpath = np.roll(rpath, halfsteps, axis=0)
|
|
mir_lpath = np.roll(lpath, halfsteps, axis=0)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
path[:, 0, :] = rpath
|
|
path[:, 1, :] = mir_rpath
|
|
path[:, 2, :] = rpath
|
|
path[:, 3, :] = mir_lpath
|
|
path[:, 4, :] = lpath
|
|
path[:, 5, :] = mir_lpath
|
|
|
|
return path+np.tile(standby_coordinate, (g_steps, 1, 1))
|
|
|
|
|
|
def gen_rotatex_path(standby_coordinate,
|
|
g_steps=20,
|
|
swing_angle=15,
|
|
y_radius=15):
|
|
assert (g_steps % 4) == 0
|
|
quarter = int(g_steps/4)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
|
|
step_angle = swing_angle / quarter
|
|
step_offset = y_radius / quarter
|
|
|
|
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_x_matrix(swing_angle - i*step_angle)
|
|
m[1, 3] = -i * step_offset
|
|
|
|
path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_x_matrix(-i*step_angle)
|
|
m[1, 3] = -y_radius + i * step_offset
|
|
|
|
path[i+quarter, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_x_matrix(i*step_angle-swing_angle)
|
|
m[1, 3] = i * step_offset
|
|
|
|
path[i+quarter*2, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_x_matrix(i*step_angle)
|
|
m[1, 3] = y_radius-i * step_offset
|
|
|
|
path[i+quarter*3, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
return path
|
|
|
|
|
|
def gen_rotatey_path(standby_coordinate,
|
|
g_steps=20,
|
|
swing_angle=15,
|
|
x_radius=15):
|
|
assert (g_steps % 4) == 0
|
|
quarter = int(g_steps/4)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
|
|
step_angle = swing_angle / quarter
|
|
step_offset = x_radius / quarter
|
|
|
|
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_y_matrix(swing_angle - i*step_angle)
|
|
m[1, 3] = -i * step_offset
|
|
|
|
path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_y_matrix(-i*step_angle)
|
|
m[1, 3] = -x_radius + i * step_offset
|
|
|
|
path[i+quarter, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_y_matrix(i*step_angle-swing_angle)
|
|
m[1, 3] = i * step_offset
|
|
|
|
path[i+quarter*2, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
m = get_rotate_y_matrix(i*step_angle)
|
|
m[1, 3] = x_radius-i * step_offset
|
|
|
|
path[i+quarter*3, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
return path
|
|
|
|
|
|
def gen_rotatez_path(standby_coordinate,
|
|
g_steps=20,
|
|
z_lift=4.5,
|
|
xy_radius=1):
|
|
assert (g_steps % 4) == 0
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
|
|
step_angle = 2*np.pi / g_steps
|
|
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
|
|
|
|
for i in range(g_steps):
|
|
x = xy_radius * np.cos(i*step_angle)
|
|
y = xy_radius * np.sin(i*step_angle)
|
|
|
|
m = get_rotate_y_matrix(np.arctan2(x, z_lift)*180/np.pi) * \
|
|
get_rotate_x_matrix(np.arctan2(y, z_lift)*180/np.pi)
|
|
|
|
path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
|
|
|
|
return path
|
|
|
|
|
|
def gen_twist_path(standby_coordinate,
|
|
g_steps=20,
|
|
raise_angle=3,
|
|
twist_x_angle=20,
|
|
twise_y_angle=12):
|
|
assert (g_steps % 4) == 0
|
|
|
|
quarter = int(g_steps / 4)
|
|
step_x_angle = twist_x_angle / quarter
|
|
step_y_angle = twise_y_angle / quarter
|
|
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
|
|
|
|
m = get_rotate_x_matrix(raise_angle)
|
|
|
|
path = np.zeros((g_steps, 6, 3))
|
|
|
|
for i in range(quarter):
|
|
temp = m * get_rotate_z_matrix(i*step_x_angle) * \
|
|
get_rotate_x_matrix(i*step_y_angle)
|
|
|
|
path[i, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
temp = m * get_rotate_z_matrix((quarter-i)*step_x_angle) * \
|
|
get_rotate_x_matrix((quarter-i)*step_y_angle)
|
|
|
|
path[i+quarter*1, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
temp = m * get_rotate_z_matrix(-i*step_x_angle) * \
|
|
get_rotate_x_matrix(i*step_y_angle)
|
|
|
|
path[i+quarter*2, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
|
|
|
|
for i in range(quarter):
|
|
temp = m * get_rotate_z_matrix((-quarter+i)*step_x_angle) * \
|
|
get_rotate_x_matrix((quarter-i)*step_y_angle)
|
|
|
|
path[i+quarter*3, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
|
|
|
|
return path
|