You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

399 lines
16 KiB
Python

#!python
#
# 2021 Zhengyu Peng
# Website: https://zpeng.me
#
# ` `
# -:. -#:
# -//:. -###:
# -////:. -#####:
# -/:.://:. -###++##:
# .. `://:- -###+. :##:
# `:/+####+. :##:
# .::::::::/+###. :##:
# .////-----+##: `:###:
# `-//:. :##: `:###/.
# `-//:. :##:`:###/.
# `-//:+######/.
# `-/+####/.
# `+##+.
# :##:
# :##:
# :##:
# :##:
# :##:
# .+:
# Libraries
# https://circuitpython.readthedocs.io/projects/servokit/en/latest/
from adafruit_servokit import ServoKit
from leg import Leg
# python3-numpy
import numpy as np
import time
import json
from path_generator import gen_forward_path, gen_backward_path
from path_generator import gen_fastforward_path, gen_fastbackward_path
from path_generator import gen_leftturn_path, gen_rightturn_path
from path_generator import gen_shiftleft_path, gen_shiftright_path
from path_generator import gen_climb_path
from path_generator import gen_rotatex_path, gen_rotatey_path, gen_rotatez_path
from path_generator import gen_twist_path
import socket
import errno
class Hexapod:
ERROR = -1
LISTEN = 1
CONNECTED = 2
STOP = 3
SIG_NORMAL = 0
SIG_STOP = 1
SIG_DISCONNECT = 2
def __init__(self):
# x -> right
# y -> front
# z -> up
# origin is the center of the body
# roots are the positions of the bottom screws
# length units are in mm
# time units are in ms
with open('./config.json', 'r') as read_file:
self.config = json.load(read_file)
self.ip = '192.168.1.127'
self.port = 1234
self.tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# self.tcp_socket.settimeout(1)
self.signal = self.SIG_NORMAL
self.mount_x = np.array(self.config['legMountX'])
self.mount_y = np.array(self.config['legMountY'])
self.root_j1 = self.config['legRootToJoint1']
self.j1_j2 = self.config['legJoint1ToJoint2']
self.j2_j3 = self.config['legJoint2ToJoint3']
self.j3_tip = self.config['legJoint3ToTip']
self.mount_angle = np.array(self.config['legMountAngle'])/180*np.pi
self.mount_position = np.zeros((6, 3))
self.mount_position[:, 0] = self.mount_x
self.mount_position[:, 1] = self.mount_y
# Objects
self.pca_right = ServoKit(channels=16, address=0x40, frequency=120)
self.pca_left = ServoKit(channels=16, address=0x41, frequency=120)
# front right
self.leg_0 = Leg(0,
[self.pca_left.servo[15], self.pca_left.servo[2],
self.pca_left.servo[1]],
correction=[4, 4, 4])
# center right
self.leg_1 = Leg(1,
[self.pca_left.servo[7], self.pca_left.servo[8],
self.pca_left.servo[6]],
correction=[0, 8, -6])
# rear right
self.leg_2 = Leg(2,
[self.pca_left.servo[0], self.pca_left.servo[14],
self.pca_left.servo[13]],
correction=[8, 6, -1])
# rear left
self.leg_3 = Leg(3,
[self.pca_right.servo[15], self.pca_right.servo[1],
self.pca_right.servo[2]],
correction=[-5, 8, -6])
# center left
self.leg_4 = Leg(4,
[self.pca_right.servo[7], self.pca_right.servo[6],
self.pca_right.servo[8]],
correction=[-8, 2, -1])
# front left
self.leg_5 = Leg(5,
[self.pca_right.servo[0], self.pca_right.servo[13],
self.pca_right.servo[14]],
correction=[0, 0, -8])
# self.leg_0.reset(True)
# self.leg_1.reset(True)
# self.leg_2.reset(True)
# self.leg_3.reset(True)
# self.leg_4.reset(True)
# self.leg_5.reset(True)
self.standby_coordinate = self.calculate_standby_coordinate(60, 75)
self.forward_path = gen_forward_path(self.standby_coordinate)
self.backward_path = gen_backward_path(self.standby_coordinate)
self.fastforward_path = gen_fastforward_path(self.standby_coordinate)
self.fastbackward_path = gen_fastbackward_path(self.standby_coordinate)
self.leftturn_path = gen_leftturn_path(self.standby_coordinate)
self.rightturn_path = gen_rightturn_path(self.standby_coordinate)
self.shiftleft_path = gen_shiftleft_path(self.standby_coordinate)
self.shiftright_path = gen_shiftright_path(self.standby_coordinate)
self.climb_path = gen_climb_path(self.standby_coordinate)
self.rotatex_path = gen_rotatex_path(self.standby_coordinate)
self.rotatey_path = gen_rotatey_path(self.standby_coordinate)
self.rotatez_path = gen_rotatez_path(self.standby_coordinate)
self.twist_path = gen_twist_path(self.standby_coordinate)
self.current_motion = None
self.standby()
time.sleep(1)
# for mm in range(0, 10):
# self.move(self.forward_path, 0.005)
# for mm in range(0, 10):
# self.move(self.backward_path, 0.005)
# for mm in range(0, 10):
# self.move(self.fastforward_path, 0.005)
# for mm in range(0, 10):
# self.move(self.fastbackward_path, 0.005)
# for mm in range(0, 10):
# self.move(self.leftturn_path, 0.005)
# for mm in range(0, 10):
# self.move(self.rightturn_path, 0.005)
# for mm in range(0, 10):
# self.move(self.shiftleft_path, 0.005)
# for mm in range(0, 10):
# self.move(self.shiftright_path, 0.005)
# for mm in range(0, 10):
# self.move(self.climb_path, 0.005)
# for mm in range(0, 10):
# self.move(self.rotatex_path, 0.005)
# for mm in range(0, 10):
# self.move(self.rotatey_path, 0.005)
# for mm in range(0, 10):
# self.move(self.rotatez_path, 0.005)
# for mm in range(0, 10):
# self.move(self.twist_path, 0.005)
# time.sleep(1)
# self.standby()
def calculate_standby_coordinate(self, j2_angle, j3_angle):
j2_rad = j2_angle/180*np.pi
j3_rad = j3_angle/180*np.pi
standby_coordinate = np.zeros((6, 3))
standby_coordinate[:, 0] = self.mount_x+(self.root_j1+self.j1_j2+(
self.j2_j3*np.sin(j2_rad))+self.j3_tip*np.cos(j3_rad))*np.cos(self.mount_angle)
standby_coordinate[:, 1] = self.mount_y + (self.root_j1+self.j1_j2+(
self.j2_j3*np.sin(j2_rad))+self.j3_tip*np.cos(j3_rad))*np.sin(self.mount_angle)
standby_coordinate[:, 2] = self.j2_j3 * \
np.cos(j2_rad) - self.j3_tip * \
np.sin(j3_rad)
return standby_coordinate
def move(self, path, interval):
for p_idx in range(0, np.shape(path)[0]):
dest = path[p_idx, :, :]
angles = self.inverse_kinematics(dest)
self.leg_0.move_junctions(angles[0, :])
self.leg_5.move_junctions(angles[5, :])
self.leg_1.move_junctions(angles[1, :])
self.leg_4.move_junctions(angles[4, :])
self.leg_2.move_junctions(angles[2, :])
self.leg_3.move_junctions(angles[3, :])
time.sleep(interval)
def move_routine(self, path, interval):
for p_idx in range(0, np.shape(path)[0]):
dest = path[p_idx, :, :]
angles = self.inverse_kinematics(dest)
self.leg_0.move_junctions(angles[0, :])
self.leg_5.move_junctions(angles[5, :])
self.leg_1.move_junctions(angles[1, :])
self.leg_4.move_junctions(angles[4, :])
self.leg_2.move_junctions(angles[2, :])
self.leg_3.move_junctions(angles[3, :])
time.sleep(interval)
def standby(self):
dest = self.standby_coordinate
angles = self.inverse_kinematics(dest)
self.leg_0.move_junctions(angles[0, :])
self.leg_5.move_junctions(angles[5, :])
self.leg_1.move_junctions(angles[1, :])
self.leg_4.move_junctions(angles[4, :])
self.leg_2.move_junctions(angles[2, :])
self.leg_3.move_junctions(angles[3, :])
def inverse_kinematics(self, dest):
temp_dest = dest-self.mount_position
local_dest = np.zeros_like(dest)
local_dest[:, 0] = temp_dest[:, 0] * \
np.cos(self.mount_angle) + \
temp_dest[:, 1] * np.sin(self.mount_angle)
local_dest[:, 1] = temp_dest[:, 0] * \
np.sin(self.mount_angle) - \
temp_dest[:, 1] * np.cos(self.mount_angle)
local_dest[:, 2] = temp_dest[:, 2]
angles = np.zeros((6, 3))
x = local_dest[:, 0] - self.root_j1
y = local_dest[:, 1]
angles[:, 0] = -(np.arctan2(y, x) * 180 / np.pi)+90
x = np.sqrt(x*x + y*y) - self.j1_j2
y = local_dest[:, 2]
ar = np.arctan2(y, x)
lr2 = x*x + y*y
lr = np.sqrt(lr2)
a1 = np.arccos((lr2 + self.j2_j3*self.j2_j3 -
self.j3_tip*self.j3_tip)/(2*self.j2_j3*lr))
a2 = np.arccos((lr2 - self.j2_j3*self.j2_j3 +
self.j3_tip*self.j3_tip)/(2*self.j3_tip*lr))
angles[:, 1] = 90-((ar + a1) * 180 / np.pi)
angles[:, 2] = (90 - ((a1 + a2) * 180 / np.pi))+90
return angles
def run(self):
try:
self.tcp_socket.bind((self.ip, self.port))
# self.tcp_socket.setblocking(False)
self.tcp_socket.listen(1)
print('TCP listening')
except OSError as err:
# print('emit tcp server error')
# self.status.emit(self.STOP, '')
pass
else:
# self.status.emit(self.LISTEN, '')
while True:
# Wait for a connection
# print('wait for a connection')
# self.status.emit(self.LISTEN, '')
try:
self.connection, addr = self.tcp_socket.accept()
self.connection.setblocking(False)
# self.connection.settimeout(1)
print('New connection')
except socket.timeout as t_out:
pass
else:
while True:
# print('waiting for data')
# if self.signal == self.SIG_NORMAL:
try:
data = self.connection.recv(4096)
except socket.error as e:
err = e.args[0]
if err == errno.EAGAIN or err == errno.EWOULDBLOCK:
if self.current_motion is not None:
self.move(self.current_motion, 0.005)
else:
time.sleep(1)
print('No data available')
continue
else:
# a "real" error occurred
print(e)
break
# sys.exit(1)
else:
if data:
if data.decode() == 'standby':
self.current_motion = None
self.standby()
elif data.decode() == 'forward':
self.current_motion = self.forward_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'backward':
self.current_motion = self.backward_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'fastforward':
self.current_motion = self.fastforward_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'fastbackward':
self.current_motion = self.fastbackward_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'leftturn':
self.current_motion = self.leftturn_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'rightturn':
self.current_motion = self.rightturn_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'shiftleft':
self.current_motion = self.shiftleft_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'shiftright':
self.current_motion = self.shiftright_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'climb':
self.current_motion = self.climb_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'rotatex':
self.current_motion = self.rotatex_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'rotatey':
self.current_motion = self.rotatey_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'rotatez':
self.current_motion = self.rotatez_path
# self.move(self.current_motion, 0.005)
elif data.decode() == 'twist':
self.current_motion = self.twist_path
# self.move(self.current_motion, 0.005)
else:
print(data.decode())
self.current_motion = None
# move_routine(self, path, interval)
# self.message.emit(
# addr[0]+':'+str(addr[1]),
# data.decode())
else:
# self.status.emit(self.LISTEN, '')
self.current_motion = None
self.standby()
break
# elif self.signal == self.SIG_DISCONNECT:
# self.signal = self.SIG_NORMAL
# # self.connection.close()
# # self.status.emit(self.LISTEN, '')
# break
finally:
self.tcp_socket.close()
self.current_motion = None
self.standby()
# self.status.emit(self.STOP, '')
print('exit')
def main():
hexapod = Hexapod()
hexapod.run()
if __name__ == '__main__':
main()