You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

294 lines
8.7 KiB
Python

#!python
#
# 2021 Zhengyu Peng
# Website: https://zpeng.me
#
# ` `
# -:. -#:
# -//:. -###:
# -////:. -#####:
# -/:.://:. -###++##:
# .. `://:- -###+. :##:
# `:/+####+. :##:
# .::::::::/+###. :##:
# .////-----+##: `:###:
# `-//:. :##: `:###/.
# `-//:. :##:`:###/.
# `-//:+######/.
# `-/+####/.
# `+##+.
# :##:
# :##:
# :##:
# :##:
# :##:
# .+:
from lib import semicircle_generator, semicircle2_generator
from lib import path_rotate_z
from lib import get_rotate_x_matrix, get_rotate_y_matrix, get_rotate_z_matrix
import numpy as np
def gen_walk_path(standby_coordinate,
g_steps=20,
g_radius=35,
direction=0):
assert (g_steps % 4) == 0
halfsteps = int(g_steps/2)
semi_circle = semicircle_generator(g_radius, g_steps)
semi_circle = np.array(path_rotate_z(semi_circle, direction))
mir_path = np.roll(semi_circle, halfsteps, axis=0)
path = np.zeros((g_steps, 6, 3))
path[:, [0, 2, 4], :] = np.tile(semi_circle[:, np.newaxis, :], (1, 3, 1))
path[:, [1, 3, 5], :] = np.tile(mir_path[:, np.newaxis, :], (1, 3, 1))
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
'type': 'motion'}
def gen_fastwalk_path(standby_coordinate,
g_steps=20,
y_radius=50,
z_radius=30,
x_radius=10,
reverse=False):
assert (g_steps % 2) == 0
halfsteps = int(g_steps/2)
path = np.zeros((g_steps, 6, 3))
semi_circle_r = semicircle2_generator(
g_steps, y_radius, z_radius, x_radius, reverse=reverse)
semi_circle_l = semicircle2_generator(
g_steps, y_radius, z_radius, -x_radius, reverse=reverse)
path[:, [0, 2], :] = np.tile(semi_circle_r[:, np.newaxis, :], (1, 2, 1))
path[:, 1, :] = np.roll(semi_circle_r, halfsteps, axis=0)
path[:, 4, :] = semi_circle_l
path[:, [3, 5], :] = np.tile(
np.roll(semi_circle_l[:, np.newaxis, :], halfsteps, axis=0), (1, 2, 1))
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
'type': 'motion'}
def gen_turn_path(standby_coordinate,
g_steps=20,
g_radius=25,
direction='left'):
assert (g_steps % 4) == 0
halfsteps = int(g_steps/2)
path = np.zeros((g_steps, 6, 3))
semi_circle = semicircle_generator(g_radius, g_steps)
mir_path = np.roll(semi_circle, halfsteps, axis=0)
if direction == 'left':
path[:, 0, :] = path_rotate_z(semi_circle, 45)
path[:, 1, :] = path_rotate_z(mir_path, 0)
path[:, 2, :] = path_rotate_z(semi_circle, 315)
path[:, 3, :] = path_rotate_z(mir_path, 225)
path[:, 4, :] = path_rotate_z(semi_circle, 180)
path[:, 5, :] = path_rotate_z(mir_path, 135)
elif direction == 'right':
path[:, 0, :] = path_rotate_z(semi_circle, 45+180)
path[:, 1, :] = path_rotate_z(mir_path, 0+180)
path[:, 2, :] = path_rotate_z(semi_circle, 315+180)
path[:, 3, :] = path_rotate_z(mir_path, 225+180)
path[:, 4, :] = path_rotate_z(semi_circle, 180+180)
path[:, 5, :] = path_rotate_z(mir_path, 135+180)
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
'type': 'motion'}
def gen_climb_path(standby_coordinate,
g_steps=20,
y_radius=20,
z_radius=80,
x_radius=30,
z_shift=-30,
reverse=False):
assert (g_steps % 4) == 0
halfsteps = int(g_steps/2)
rpath = semicircle2_generator(
g_steps, y_radius, z_radius, x_radius, reverse=reverse)
rpath[:, 2] = rpath[:, 2]+z_shift
lpath = semicircle2_generator(
g_steps, y_radius, z_radius, -x_radius, reverse=reverse)
lpath[:, 2] = lpath[:, 2]+z_shift
mir_rpath = np.roll(rpath, halfsteps, axis=0)
mir_lpath = np.roll(lpath, halfsteps, axis=0)
path = np.zeros((g_steps, 6, 3))
path[:, 0, :] = rpath
path[:, 1, :] = mir_rpath
path[:, 2, :] = rpath
path[:, 3, :] = mir_lpath
path[:, 4, :] = lpath
path[:, 5, :] = mir_lpath
return {'coord': path+np.tile(standby_coordinate, (g_steps, 1, 1)),
'type': 'motion'}
def gen_rotatex_path(standby_coordinate,
g_steps=20,
swing_angle=15,
y_radius=15):
assert (g_steps % 4) == 0
quarter = int(g_steps/4)
path = np.zeros((g_steps, 6, 3))
step_angle = swing_angle / quarter
step_offset = y_radius / quarter
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
for i in range(quarter):
m = get_rotate_x_matrix(swing_angle - i*step_angle)
m[1, 3] = -i * step_offset
path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
for i in range(quarter):
m = get_rotate_x_matrix(-i*step_angle)
m[1, 3] = -y_radius + i * step_offset
path[i+quarter, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
for i in range(quarter):
m = get_rotate_x_matrix(i*step_angle-swing_angle)
m[1, 3] = i * step_offset
path[i+quarter*2, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
for i in range(quarter):
m = get_rotate_x_matrix(i*step_angle)
m[1, 3] = y_radius-i * step_offset
path[i+quarter*3, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
return {'coord': path,
'type': 'motion'}
def gen_rotatey_path(standby_coordinate,
g_steps=20,
swing_angle=15,
x_radius=15):
assert (g_steps % 4) == 0
quarter = int(g_steps/4)
path = np.zeros((g_steps, 6, 3))
step_angle = swing_angle / quarter
step_offset = x_radius / quarter
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
for i in range(quarter):
m = get_rotate_y_matrix(swing_angle - i*step_angle)
m[1, 3] = -i * step_offset
path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
for i in range(quarter):
m = get_rotate_y_matrix(-i*step_angle)
m[1, 3] = -x_radius + i * step_offset
path[i+quarter, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
for i in range(quarter):
m = get_rotate_y_matrix(i*step_angle-swing_angle)
m[1, 3] = i * step_offset
path[i+quarter*2, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
for i in range(quarter):
m = get_rotate_y_matrix(i*step_angle)
m[1, 3] = x_radius-i * step_offset
path[i+quarter*3, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
return {'coord': path,
'type': 'motion'}
def gen_rotatez_path(standby_coordinate,
g_steps=20,
z_lift=4.5,
xy_radius=1):
assert (g_steps % 4) == 0
path = np.zeros((g_steps, 6, 3))
step_angle = 2*np.pi / g_steps
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
for i in range(g_steps):
x = xy_radius * np.cos(i*step_angle)
y = xy_radius * np.sin(i*step_angle)
m = get_rotate_y_matrix(np.arctan2(x, z_lift)*180/np.pi) * \
get_rotate_x_matrix(np.arctan2(y, z_lift)*180/np.pi)
path[i, :, :] = ((np.matmul(m, scx.T)).T)[:, :-1]
return {'coord': path,
'type': 'motion'}
def gen_twist_path(standby_coordinate,
g_steps=20,
raise_angle=3,
twist_x_angle=20,
twise_y_angle=12):
assert (g_steps % 4) == 0
quarter = int(g_steps / 4)
step_x_angle = twist_x_angle / quarter
step_y_angle = twise_y_angle / quarter
scx = np.append(standby_coordinate, np.ones((6, 1)), axis=1)
m = get_rotate_x_matrix(raise_angle)
path = np.zeros((g_steps, 6, 3))
for i in range(quarter):
temp = m * get_rotate_z_matrix(i*step_x_angle) * \
get_rotate_x_matrix(i*step_y_angle)
path[i, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
for i in range(quarter):
temp = m * get_rotate_z_matrix((quarter-i)*step_x_angle) * \
get_rotate_x_matrix((quarter-i)*step_y_angle)
path[i+quarter*1, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
for i in range(quarter):
temp = m * get_rotate_z_matrix(-i*step_x_angle) * \
get_rotate_x_matrix(i*step_y_angle)
path[i+quarter*2, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
for i in range(quarter):
temp = m * get_rotate_z_matrix((-quarter+i)*step_x_angle) * \
get_rotate_x_matrix((quarter-i)*step_y_angle)
path[i+quarter*3, :, :] = ((np.matmul(temp, scx.T)).T)[:, :-1]
return {'coord': path,
'type': 'motion'}