From 0e00ba7fca7dce4e1b4fc0a5c98d90b95dc71c0c Mon Sep 17 00:00:00 2001 From: Cole Deck Date: Sun, 8 Dec 2019 20:47:21 -0600 Subject: [PATCH] format code --- main.py | 480 ++++++++++++++++++++++++++++---------------------------- 1 file changed, 243 insertions(+), 237 deletions(-) diff --git a/main.py b/main.py index 9ec2caa..0648eac 100644 --- a/main.py +++ b/main.py @@ -6,82 +6,88 @@ import argparse import imutils import cv2 import math -import time +import time itemw = 0 itemh = 0 def midpoint(ptA, ptB): - return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) + return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) + def sizeVexScrew(iteml): - # Screw Sizing code - # subtract screw head size to find thread length - shead = 0.1 - iteml -= shead - #print("Thread Length: " + str(iteml)) - iteml *= 8 - iteml = round(iteml) - iteml /= 8 - return iteml + # Screw Sizing code + # subtract screw head size to find thread length + shead = 0.1 + iteml -= shead + #print("Thread Length: " + str(iteml)) + iteml *= 8 + iteml = round(iteml) + iteml /= 8 + return iteml + def sizeStandoff(iteml): - # Standoff Sizing code - iteml *= 2 - iteml = round(iteml) - iteml /= 2 - return iteml + # Standoff Sizing code + iteml *= 2 + iteml = round(iteml) + iteml /= 2 + return iteml def larger(a, b): - if a >= b: - return a - else: - return b + if a >= b: + return a + else: + return b + def smaller(a, b): - if a < b: - return a - else: - return b + if a < b: + return a + else: + return b + def near(a, b, close): - if abs(a-b) < close: - return True - return False + if abs(a-b) < close: + return True + return False + def swap(a, b): - tmp = a - a = b - b = tmp + tmp = a + a = b + b = tmp # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, - help="path to the input image") + help="path to the input image") ap.add_argument("-w", "--width", type=float, required=True, - help="width of the left-most object in the image (in inches)") + help="width of the left-most object in the image (in inches)") ap.add_argument("-n", "--number", type=int, required=False, - help="object # to measure (from left to right)") + help="object # to measure (from left to right)") ap.add_argument("-s", "--show", action="store_true", - help="show on the screen") + help="show on the screen") args = vars(ap.parse_args()) args2 = ap.parse_args() selected = 2 if type(args["number"]) == type(selected): - selected = args["number"] + selected = args["number"] # load the image, convert it to grayscale, and blur it slightly image = cv2.imread(args["image"]) #image = cv2.resize(image, (int(image.shape[1]*1), int(image.shape[0]*1))) -image = cv2.resize(image, (1000, int(image.shape[0]/image.shape[1] * 1000)), interpolation = cv2.INTER_NEAREST) +image = cv2.resize(image, (1000, int( + image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST) if args2.show: - cv2.namedWindow("Item Sorter") - cv2.imshow("Item Sorter", image) - cv2.waitKey(0) + cv2.namedWindow("Item Sorter") + cv2.imshow("Item Sorter", image) + cv2.waitKey(0) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (7, 7), 0) @@ -93,11 +99,11 @@ edged = cv2.dilate(edged, None, iterations=1) #edged = cv2.erode(edged, None, iterations=1) if args2.show: - cv2.imshow("Item Sorter", edged) - cv2.waitKey(0) + cv2.imshow("Item Sorter", edged) + cv2.waitKey(0) # find contours in the edge map cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, - cv2.CHAIN_APPROX_SIMPLE) + cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) # sort the contours from left-to-right and initialize the @@ -107,205 +113,205 @@ pixelsPerMetric = None num = 0 - - - # Calibration loop for c in cnts: - # if the contour is not sufficiently large, ignore it - if cv2.contourArea(c) < 100: - continue - # compute the rotated bounding box of the contour - orig = image.copy() - box = cv2.minAreaRect(c) - box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) - box = np.array(box, dtype="int") - #box = perspective.order_points(box) - (tl, tr, br, bl) = box - (tltrX, tltrY) = midpoint(tl, tr) - (blbrX, blbrY) = midpoint(bl, br) - (tlblX, tlblY) = midpoint(tl, bl) - (trbrX, trbrY) = midpoint(tr, br) - dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0))) - dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0))) - area_box = dA * dB - (x,y),radius = cv2.minEnclosingCircle(c) - area_contour = cv2.contourArea(c) - area_circle = math.pi * pow(radius, 2) - boxiness = area_contour / area_box - circleness = area_contour / area_circle - circular = False - rectangular = False - if boxiness > circleness: - rectangular = True - cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) - else: - circular = True - cv2.circle(orig,(int(x),int(y)),int(radius),(0,255,0),2) - mask = np.zeros(gray.shape,np.uint8) - cv2.drawContours(mask,[c],0,255,-1) - #pixelpoints = np.transpose(np.nonzero(mask)) - hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV) - mean_val = cv2.mean(hsv,mask = mask) - print(str(mean_val[0])) - #print(", " + str(mean_val[0]/mean_val[2])) - #print(", " + str(mean_val[2]/mean_val[1])) - if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5): - # and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True: - pixelsPerMetric = smaller(dA, dB) / args["width"] - + # if the contour is not sufficiently large, ignore it + if cv2.contourArea(c) < 100: + continue + # compute the rotated bounding box of the contour + orig = image.copy() + box = cv2.minAreaRect(c) + box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) + box = np.array(box, dtype="int") + #box = perspective.order_points(box) + (tl, tr, br, bl) = box + (tltrX, tltrY) = midpoint(tl, tr) + (blbrX, blbrY) = midpoint(bl, br) + (tlblX, tlblY) = midpoint(tl, bl) + (trbrX, trbrY) = midpoint(tr, br) + dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - + np.array((blbrX, blbrY, 0))) + dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - + np.array((trbrX, trbrY, 0))) + area_box = dA * dB + (x, y), radius = cv2.minEnclosingCircle(c) + area_contour = cv2.contourArea(c) + area_circle = math.pi * pow(radius, 2) + boxiness = area_contour / area_box + circleness = area_contour / area_circle + circular = False + rectangular = False + if boxiness > circleness: + rectangular = True + cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) + else: + circular = True + cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 2) + mask = np.zeros(gray.shape, np.uint8) + cv2.drawContours(mask, [c], 0, 255, -1) + #pixelpoints = np.transpose(np.nonzero(mask)) + hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV) + mean_val = cv2.mean(hsv, mask=mask) + print(str(mean_val[0])) + #print(", " + str(mean_val[0]/mean_val[2])) + #print(", " + str(mean_val[2]/mean_val[1])) + if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5): + # and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True: + pixelsPerMetric = smaller(dA, dB) / args["width"] orig = image.copy() # loop over the contours individually for c in cnts: - #orig = image.copy() - num += 1 - # if the contour is not sufficiently large, ignore it - if cv2.contourArea(c) < 100 or pixelsPerMetric is None: - continue - # compute the rotated bounding box of the contour - - - box = cv2.minAreaRect(c) - box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) - box = np.array(box, dtype="int") - - # order the points in the contour such that they appear - # in top-left, top-right, bottom-right, and bottom-left - # order, then draw the outline of the rotated bounding - # box - #box = perspective.order_points(box) - - # loop over the original points and draw them - #for (x, y) in box: - #cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1) - - # unpack the ordered bounding box, then compute the midpoint - # between the top-left and top-right coordinates, followed by - # the midpoint between bottom-left and bottom-right coordinates - (tl, tr, br, bl) = box - (tltrX, tltrY) = midpoint(tl, tr) - (blbrX, blbrY) = midpoint(bl, br) - - # compute the midpoint between the top-left and top-right points, - # followed by the midpoint between the top-right and bottom-right - (tlblX, tlblY) = midpoint(tl, bl) - (trbrX, trbrY) = midpoint(tr, br) - # draw the midpoints on the image - #cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) - #cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) - #cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) - #cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) - - # draw lines between the midpoints - # compute the Euclidean distance between the midpoints - dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0))) - dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0))) - - - dimA = dA / pixelsPerMetric - dimB = dB / pixelsPerMetric - - if num == selected or args2.show: - area_box = dA * dB - (x,y),radius = cv2.minEnclosingCircle(c) - area_contour = cv2.contourArea(c) - area_circle = math.pi * pow(radius, 2) - boxiness = area_contour / area_box - circleness = area_contour / area_circle - circular = False - rectangular = False - if boxiness > circleness: - rectangular = True - #cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) - else: - circular = True - cv2.circle(orig,(int(x),int(y)),int(radius),(0,255,0),1) - - - objtype = "Unknown" - itemw = larger(dimA, dimB) - itemwr = itemw - itemwr *= 8 - itemwr = round(itemwr) - itemwr /= 8 - - itemh = smaller(dimA, dimB) - itemhr = itemh - itemhr *= 16 - itemhr = round(itemhr) - itemhr /= 16 - if circular and itemwr == 0.75: - objtype = "Penny" - iteml = 0 - else: - epsilon = 3#0.02*cv2.arcLength(c,True) - #print(str(epsilon)) - approx = cv2.approxPolyDP(c,epsilon,True) - hull = cv2.convexHull(approx, returnPoints=False) - hull2 = cv2.convexHull(c) - defects = cv2.convexityDefects(c,hull) - #print(str(defects.size) + " match") - cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3) - cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3) - convexness = area_contour / cv2.contourArea(hull2) - #print(str(convexness) + " % fill") - #if not cv2.isContourConvex(approx): - #if cv2.matchShapes(hull, c, 1, 0.0) > 1: - if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75): - objtype = "Screw" - iteml = larger(dimA, dimB) - #print("Screw Length (RAW): " + str(iteml)) - iteml = sizeVexScrew(radius * 2 / pixelsPerMetric) - #print("Rounded Length: " + str(iteml)) - else: - if itemhr == 0.3125: - objtype = "Standoff" - iteml = sizeStandoff(itemw) - - if itemhr == 0.1875: - objtype = "Axle" - iteml = (radius * 2 / pixelsPerMetric + itemw) / 2 - - rows,cols = orig.shape[:2] - [vx,vy,xx,yy] = cv2.fitLine(c, cv2.DIST_L2,0,0.01,0.01) - lefty = int((-xx*vy/vx) + yy) - righty = int(((cols-xx)*vy/vx)+yy) - #cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2) - slope = (lefty - righty) / (1 - cols) - angle = math.atan(slope) - xpos = x - math.cos(angle) * radius - ypos = y - math.sin(angle) * radius - xpos2 = x + math.cos(angle) * radius - ypos2 = y + math.sin(angle) * radius - if xpos > xpos2: - swap(xpos, xpos2) - swap(ypos, ypos2) - if rectangular: - cv2.line(orig,(int(xpos),int(ypos)),(int(xpos2), int(ypos2)),(0,255,0),1) - #print(str(iteml)) - # draw the object sizes on the image - if args2.show: - #cv2.putText(orig, "{:.5f}in".format(itemhr), - # (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, - # 0.65, (255, 255, 255), 2) - cv2.putText(orig, str(objtype), - (int(xpos2 + 10), int(ypos2 + 20)), cv2.FONT_HERSHEY_SIMPLEX, - 0.65, (255, 255, 255), 2) - output = "" - if objtype == "Unknown": - output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh) - if objtype == "Screw" or objtype == "Standoff": - output = str(iteml) + "in" - if objtype == "Axle": - output = "{:.2f}in".format(iteml) - cv2.putText(orig, output, # print data - (int(xpos2 + 10), int(ypos2 + 40)), cv2.FONT_HERSHEY_SIMPLEX, - 0.65, (255, 255, 255), 2) - - # show the output image - cv2.imshow("Item Sorter", orig) - cv2.waitKey(25) - -cv2.waitKey(0) \ No newline at end of file + #orig = image.copy() + num += 1 + # if the contour is not sufficiently large, ignore it + if cv2.contourArea(c) < 100 or pixelsPerMetric is None: + continue + # compute the rotated bounding box of the contour + + box = cv2.minAreaRect(c) + box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) + box = np.array(box, dtype="int") + + # order the points in the contour such that they appear + # in top-left, top-right, bottom-right, and bottom-left + # order, then draw the outline of the rotated bounding + # box + #box = perspective.order_points(box) + + # loop over the original points and draw them + # for (x, y) in box: + #cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1) + + # unpack the ordered bounding box, then compute the midpoint + # between the top-left and top-right coordinates, followed by + # the midpoint between bottom-left and bottom-right coordinates + (tl, tr, br, bl) = box + (tltrX, tltrY) = midpoint(tl, tr) + (blbrX, blbrY) = midpoint(bl, br) + + # compute the midpoint between the top-left and top-right points, + # followed by the midpoint between the top-right and bottom-right + (tlblX, tlblY) = midpoint(tl, bl) + (trbrX, trbrY) = midpoint(tr, br) + # draw the midpoints on the image + #cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) + #cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) + #cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) + #cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) + + # draw lines between the midpoints +# compute the Euclidean distance between the midpoints + dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - + np.array((blbrX, blbrY, 0))) + dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - + np.array((trbrX, trbrY, 0))) + + dimA = dA / pixelsPerMetric + dimB = dB / pixelsPerMetric + + if num == selected or args2.show: + area_box = dA * dB + (x, y), radius = cv2.minEnclosingCircle(c) + area_contour = cv2.contourArea(c) + area_circle = math.pi * pow(radius, 2) + boxiness = area_contour / area_box + circleness = area_contour / area_circle + circular = False + rectangular = False + if boxiness > circleness: + rectangular = True + #cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) + else: + circular = True + cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 1) + + objtype = "Unknown" + itemw = larger(dimA, dimB) + itemwr = itemw + itemwr *= 8 + itemwr = round(itemwr) + itemwr /= 8 + + itemh = smaller(dimA, dimB) + itemhr = itemh + itemhr *= 16 + itemhr = round(itemhr) + itemhr /= 16 + if circular and itemwr == 0.75: + objtype = "Penny" + iteml = 0 + else: + epsilon = 3 # 0.02*cv2.arcLength(c,True) + # print(str(epsilon)) + approx = cv2.approxPolyDP(c, epsilon, True) + hull = cv2.convexHull(approx, returnPoints=False) + hull2 = cv2.convexHull(c) + defects = cv2.convexityDefects(c, hull) + #print(str(defects.size) + " match") + cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3) + cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3) + convexness = area_contour / cv2.contourArea(hull2) + #print(str(convexness) + " % fill") + # if not cv2.isContourConvex(approx): + # if cv2.matchShapes(hull, c, 1, 0.0) > 1: + if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75): + objtype = "Screw" + iteml = larger(dimA, dimB) + #print("Screw Length (RAW): " + str(iteml)) + iteml = sizeVexScrew(radius * 2 / pixelsPerMetric) + #print("Rounded Length: " + str(iteml)) + else: + if itemhr == 0.3125: + objtype = "Standoff" + iteml = sizeStandoff(itemw) + + if itemhr == 0.1875: + objtype = "Axle" + iteml = (radius * 2 / pixelsPerMetric + itemw) / 2 + + rows, cols = orig.shape[:2] + [vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01) + lefty = int((-xx*vy/vx) + yy) + righty = int(((cols-xx)*vy/vx)+yy) + # cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2) + slope = (lefty - righty) / (1 - cols) + angle = math.atan(slope) + xpos = x - math.cos(angle) * radius + ypos = y - math.sin(angle) * radius + xpos2 = x + math.cos(angle) * radius + ypos2 = y + math.sin(angle) * radius + if xpos > xpos2: + swap(xpos, xpos2) + swap(ypos, ypos2) + if rectangular: + cv2.line(orig, (int(xpos), int(ypos)), + (int(xpos2), int(ypos2)), (0, 255, 0), 1) + # print(str(iteml)) + # draw the object sizes on the image + if args2.show: + # cv2.putText(orig, "{:.5f}in".format(itemhr), + # (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, + # 0.65, (255, 255, 255), 2) + cv2.putText(orig, str(objtype), + (int(xpos2 + 10), int(ypos2 + 20) + ), cv2.FONT_HERSHEY_SIMPLEX, + 0.65, (255, 255, 255), 2) + output = "" + if objtype == "Unknown": + output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh) + if objtype == "Screw" or objtype == "Standoff": + output = str(iteml) + "in" + if objtype == "Axle": + output = "{:.2f}in".format(iteml) + cv2.putText(orig, output, # print data + (int(xpos2 + 10), int(ypos2 + 40) + ), cv2.FONT_HERSHEY_SIMPLEX, + 0.65, (255, 255, 255), 2) + + # show the output image + cv2.imshow("Item Sorter", orig) + cv2.waitKey(25) + +cv2.waitKey(0)