fix bug with circle vs rectangle; basic detection for spacers, washers, and keps nuts

master
Cole Deck 5 years ago
parent b852d57345
commit 58b90af9c3

@ -66,6 +66,8 @@ def swap(a, b):
ap = argparse.ArgumentParser() ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, ap.add_argument("-i", "--image", required=True,
help="path to the input image") help="path to the input image")
#ap.add_argument("-c", "--cascade", required=True,
# help="path to the cascade")
ap.add_argument("-w", "--width", type=float, required=True, ap.add_argument("-w", "--width", type=float, required=True,
help="width of the left-most object in the image (in inches)") help="width of the left-most object in the image (in inches)")
ap.add_argument("-n", "--number", type=int, required=False, ap.add_argument("-n", "--number", type=int, required=False,
@ -89,14 +91,20 @@ if args2.show:
cv2.imshow("Item Sorter", image) cv2.imshow("Item Sorter", image)
cv2.waitKey(0) cv2.waitKey(0)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0) gray = cv2.GaussianBlur(gray, (5, 5), 0)
if args2.show:
cv2.imshow("Item Sorter", gray)
cv2.waitKey(0)
# perform edge detection, then perform a dilation + erosion to # perform edge detection, then perform a dilation + erosion to
# close gaps in between object edges # close gaps in between object edges
edged = cv2.Canny(gray, 50, 100) edged = cv2.Canny(gray, 50, 100)
if args2.show:
cv2.imshow("Item Sorter", edged)
cv2.waitKey(0)
edged = cv2.dilate(edged, None, iterations=1) edged = cv2.dilate(edged, None, iterations=1)
#edged = cv2.erode(edged, None, iterations=1) edged = cv2.erode(edged, None, iterations=1)
if args2.show: if args2.show:
cv2.imshow("Item Sorter", edged) cv2.imshow("Item Sorter", edged)
@ -155,7 +163,7 @@ for c in cnts:
#pixelpoints = np.transpose(np.nonzero(mask)) #pixelpoints = np.transpose(np.nonzero(mask))
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV) hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
mean_val = cv2.mean(hsv, mask=mask) mean_val = cv2.mean(hsv, mask=mask)
print(str(mean_val[0])) #print(str(mean_val[0]))
#print(", " + str(mean_val[0]/mean_val[2])) #print(", " + str(mean_val[0]/mean_val[2]))
#print(", " + str(mean_val[2]/mean_val[1])) #print(", " + str(mean_val[2]/mean_val[1]))
if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5): if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
@ -246,6 +254,19 @@ for c in cnts:
objtype = "Penny" objtype = "Penny"
iteml = 0 iteml = 0
else: else:
if circular and near(radius * 2 / pixelsPerMetric, 0.38, 0.03):
# Keps nut or spacer
objtype = "Spacer"
mask = np.zeros(gray.shape, np.uint8)
cv2.drawContours(mask, [c], 0, 255, -1)
#pixelpoints = np.transpose(np.nonzero(mask))
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
mean_val = cv2.mean(hsv, mask=mask)
#print(str(mean_val[0]))
if near(mean_val[0], 47, 5) and near(mean_val[1], 70, 5) and near(mean_val[2], 78, 5):
objtype = "Keps Nut"
if circular and near(radius / pixelsPerMetric, 0.23, 0.02):
objtype = "Washer"
epsilon = 3 # 0.02*cv2.arcLength(c,True) epsilon = 3 # 0.02*cv2.arcLength(c,True)
# print(str(epsilon)) # print(str(epsilon))
approx = cv2.approxPolyDP(c, epsilon, True) approx = cv2.approxPolyDP(c, epsilon, True)
@ -259,18 +280,18 @@ for c in cnts:
#print(str(convexness) + " % fill") #print(str(convexness) + " % fill")
# if not cv2.isContourConvex(approx): # if not cv2.isContourConvex(approx):
# if cv2.matchShapes(hull, c, 1, 0.0) > 1: # if cv2.matchShapes(hull, c, 1, 0.0) > 1:
if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75): if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
objtype = "Screw" objtype = "Screw"
iteml = larger(dimA, dimB) iteml = larger(dimA, dimB)
#print("Screw Length (RAW): " + str(iteml)) #print("Screw Length (RAW): " + str(iteml))
iteml = sizeVexScrew(radius * 2 / pixelsPerMetric) iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
#print("Rounded Length: " + str(iteml)) #print("Rounded Length: " + str(iteml))
else: else:
if itemhr == 0.3125: if itemhr == 0.3125 and rectangular:
objtype = "Standoff" objtype = "Standoff"
iteml = sizeStandoff(itemw) iteml = sizeStandoff(itemw)
if itemhr == 0.1875: if itemhr == 0.1875 and rectangular:
objtype = "Axle" objtype = "Axle"
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2 iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
@ -297,10 +318,16 @@ for c in cnts:
# cv2.putText(orig, "{:.5f}in".format(itemhr), # cv2.putText(orig, "{:.5f}in".format(itemhr),
# (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, # (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
# 0.65, (255, 255, 255), 2) # 0.65, (255, 255, 255), 2)
if circular:
cv2.putText(orig, str(objtype),
(int(x - 25), int(y + radius + 20)
), cv2.FONT_HERSHEY_SIMPLEX,
0.55, (255, 255, 255), 2)
else:
cv2.putText(orig, str(objtype), cv2.putText(orig, str(objtype),
(int(xpos2 + 10), int(ypos2 + 20) (int(xpos2 + 10), int(ypos2 + 20)
), cv2.FONT_HERSHEY_SIMPLEX, ), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (255, 255, 255), 2) 0.55, (255, 255, 255), 2)
output = "" output = ""
if objtype == "Unknown": if objtype == "Unknown":
output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh) output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
@ -308,10 +335,16 @@ for c in cnts:
output = str(iteml) + "in" output = str(iteml) + "in"
if objtype == "Axle": if objtype == "Axle":
output = "{:.2f}in".format(iteml) output = "{:.2f}in".format(iteml)
if circular:
cv2.putText(orig, output, # print data
(int(x - 25), int(y + radius + 35)
), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 255, 255), 1)
else:
cv2.putText(orig, output, # print data cv2.putText(orig, output, # print data
(int(xpos2 + 10), int(ypos2 + 40) (int(xpos2 + 10), int(ypos2 + 35)
), cv2.FONT_HERSHEY_SIMPLEX, ), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (255, 255, 255), 2) 0.5, (255, 255, 255), 1)
# show the output image # show the output image
cv2.imshow("Item Sorter", orig) cv2.imshow("Item Sorter", orig)

Loading…
Cancel
Save