commit 88333f4fb5b87ff94265a0c654df61ae9f761e65 Author: Cole Deck Date: Thu Dec 5 10:16:59 2019 -0600 Initial commit diff --git a/img.jpg b/img.jpg new file mode 100644 index 0000000..03c1f6f Binary files /dev/null and b/img.jpg differ diff --git a/img2.jpg b/img2.jpg new file mode 100644 index 0000000..cf59433 Binary files /dev/null and b/img2.jpg differ diff --git a/img3.jpg b/img3.jpg new file mode 100644 index 0000000..2ac9828 Binary files /dev/null and b/img3.jpg differ diff --git a/test3.py b/test3.py new file mode 100644 index 0000000..f354af8 --- /dev/null +++ b/test3.py @@ -0,0 +1,180 @@ +# import the necessary packages +from scipy.spatial import distance as dist +from imutils import perspective +from imutils import contours +import numpy as np +import argparse +import imutils +import cv2 +import math + +itemw = 0 +itemh = 0 + + +def midpoint(ptA, ptB): + return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) + +def sizeVexScrew(iteml): + # Screw Sizing code + # subtract screw head size to find thread length + shead = 0.09 + iteml -= shead + #print("Thread Length: " + str(iteml)) + iteml *= 8 + iteml = round(iteml) + iteml /= 8 + return iteml + + +# construct the argument parse and parse the arguments +ap = argparse.ArgumentParser() +ap.add_argument("-i", "--image", required=True, + help="path to the input image") +ap.add_argument("-w", "--width", type=float, required=True, + help="width of the left-most object in the image (in inches)") +ap.add_argument("-n", "--number", type=int, required=False, + help="object # to measure (from left to right)") +ap.add_argument("-s", "--show", type=bool, required=False, + help="show on the screen") +args = vars(ap.parse_args()) + +selected = 2 +if type(args["number"]) == type(selected): + selected = args["number"] + +# load the image, convert it to grayscale, and blur it slightly +image = cv2.imread(args["image"]) +gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) +gray = cv2.GaussianBlur(gray, (7, 7), 0) + + +# perform edge detection, then perform a dilation + erosion to +# close gaps in between object edges +edged = cv2.Canny(gray, 50, 100) +edged = cv2.dilate(edged, None, iterations=1) +edged = cv2.erode(edged, None, iterations=1) +if args["show"] == True: + cv2.imshow("Image", edged) + cv2.waitKey(0) +# find contours in the edge map +cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, + cv2.CHAIN_APPROX_SIMPLE) +cnts = imutils.grab_contours(cnts) + +# sort the contours from left-to-right and initialize the +# 'pixels per metric' calibration variable +(cnts, _) = contours.sort_contours(cnts) +pixelsPerMetric = None +num = 0 +# loop over the contours individually +for c in cnts: + num += 1 + # if the contour is not sufficiently large, ignore it + if cv2.contourArea(c) < 100: + continue + # compute the rotated bounding box of the contour + orig = image.copy() + + box = cv2.minAreaRect(c) + box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) + box = np.array(box, dtype="int") + + # order the points in the contour such that they appear + # in top-left, top-right, bottom-right, and bottom-left + # order, then draw the outline of the rotated bounding + # box + box = perspective.order_points(box) + cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) + + # loop over the original points and draw them + for (x, y) in box: + cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1) + + # unpack the ordered bounding box, then compute the midpoint + # between the top-left and top-right coordinates, followed by + # the midpoint between bottom-left and bottom-right coordinates + (tl, tr, br, bl) = box + (tltrX, tltrY) = midpoint(tl, tr) + (blbrX, blbrY) = midpoint(bl, br) + + # compute the midpoint between the top-left and top-right points, + # followed by the midpoint between the top-righ and bottom-right + (tlblX, tlblY) = midpoint(tl, bl) + (trbrX, trbrY) = midpoint(tr, br) + + # draw the midpoints on the image + cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) + cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) + cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) + cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) + + # draw lines between the midpoints + cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), + (255, 0, 255), 2) + cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), + (255, 0, 255), 2) + + # unpack the ordered bounding box, then compute the midpoint + # between the top-left and top-right coordinates, followed by + # the midpoint between bottom-left and bottom-right coordinates + (tl, tr, br, bl) = box + (tltrX, tltrY) = midpoint(tl, tr) + (blbrX, blbrY) = midpoint(bl, br) + + # compute the midpoint between the top-left and top-right points, + # followed by the midpoint between the top-righ and bottom-right + (tlblX, tlblY) = midpoint(tl, bl) + (trbrX, trbrY) = midpoint(tr, br) + + # draw the midpoints on the image + cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) + cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) + cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) + cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) + + # draw lines between the midpoints + cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), + (255, 0, 255), 2) + cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), + (255, 0, 255), 2) + # compute the Euclidean distance between the midpoints + dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) + dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) + + # if the pixels per metric has not been initialized, then + # compute it as the ratio of pixels to supplied metric + # (in this case, inches) + if pixelsPerMetric is None: + pixelsPerMetric = dB / args["width"] + # compute the size of the object + dimA = dA / pixelsPerMetric + dimB = dB / pixelsPerMetric + + if num == selected: + itemw = dimA + itemh = dimB + if itemw >= itemh: + iteml = itemw + else: + iteml = itemh + print("Screw Length (RAW): " + str(iteml)) + iteml = sizeVexScrew(iteml) + print("Rounded Length: " + str(iteml)) + # draw the object sizes on the image + if args["show"] == True: + cv2.putText(orig, "{:.5f}in".format(dimA), + (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX, + 0.65, (255, 255, 255), 2) + cv2.putText(orig, "{:.5f}in".format(dimB), + (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, + 0.65, (255, 255, 255), 2) + + # show the output image + cv2.imshow("Image", orig) + cv2.waitKey(0) + + +# Screw Sizing + +