# import the necessary packages #from scipy.spatial import distance as dist from imutils import perspective from imutils import contours import numpy as np import argparse import imutils import cv2 import math itemw = 0 itemh = 0 def midpoint(ptA, ptB): return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) def sizeVexScrew(iteml): # Screw Sizing code # subtract screw head size to find thread length shead = 0.09 iteml -= shead #print("Thread Length: " + str(iteml)) iteml *= 8 iteml = round(iteml) iteml /= 8 return iteml def larger(a, b): if a >= b: return a else: return b # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to the input image") ap.add_argument("-w", "--width", type=float, required=True, help="width of the left-most object in the image (in inches)") ap.add_argument("-n", "--number", type=int, required=False, help="object # to measure (from left to right)") ap.add_argument("-s", "--show", action="store_true", help="show on the screen") args = vars(ap.parse_args()) args2 = ap.parse_args() selected = 2 if type(args["number"]) == type(selected): selected = args["number"] # load the image, convert it to grayscale, and blur it slightly image = cv2.imread(args["image"]) image = cv2.resize(image, (image.shape[1]*2, image.shape[0]*2), interpolation = cv2.INTER_NEAREST) if args2.show: cv2.imshow("Image", image) cv2.waitKey(0) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (7, 7), 0) # perform edge detection, then perform a dilation + erosion to # close gaps in between object edges edged = cv2.Canny(gray, 50, 100) edged = cv2.dilate(edged, None, iterations=1) edged = cv2.erode(edged, None, iterations=1) if args2.show: cv2.imshow("Image", edged) cv2.waitKey(0) # find contours in the edge map cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) # sort the contours from left-to-right and initialize the # 'pixels per metric' calibration variable (cnts, _) = contours.sort_contours(cnts) pixelsPerMetric = None num = 0 # loop over the contours individually for c in cnts: num += 1 # if the contour is not sufficiently large, ignore it if cv2.contourArea(c) < 100: continue # compute the rotated bounding box of the contour orig = image.copy() box = cv2.minAreaRect(c) box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) box = np.array(box, dtype="int") # order the points in the contour such that they appear # in top-left, top-right, bottom-right, and bottom-left # order, then draw the outline of the rotated bounding # box box = perspective.order_points(box) cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) # loop over the original points and draw them for (x, y) in box: cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1) # unpack the ordered bounding box, then compute the midpoint # between the top-left and top-right coordinates, followed by # the midpoint between bottom-left and bottom-right coordinates (tl, tr, br, bl) = box (tltrX, tltrY) = midpoint(tl, tr) (blbrX, blbrY) = midpoint(bl, br) # compute the midpoint between the top-left and top-right points, # followed by the midpoint between the top-righ and bottom-right (tlblX, tlblY) = midpoint(tl, bl) (trbrX, trbrY) = midpoint(tr, br) # draw the midpoints on the image cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) # draw lines between the midpoints cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), (255, 0, 255), 2) cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), (255, 0, 255), 2) # unpack the ordered bounding box, then compute the midpoint # between the top-left and top-right coordinates, followed by # the midpoint between bottom-left and bottom-right coordinates (tl, tr, br, bl) = box (tltrX, tltrY) = midpoint(tl, tr) (blbrX, blbrY) = midpoint(bl, br) # compute the midpoint between the top-left and top-right points, # followed by the midpoint between the top-righ and bottom-right (tlblX, tlblY) = midpoint(tl, bl) (trbrX, trbrY) = midpoint(tr, br) # draw the midpoints on the image cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) # draw lines between the midpoints cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), (255, 0, 255), 2) cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), (255, 0, 255), 2) # compute the Euclidean distance between the midpoints dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0))) dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0))) # if the pixels per metric has not been initialized, then # compute it as the ratio of pixels to supplied metric # (in this case, inches) if pixelsPerMetric is None: pixelsPerMetric = dB / args["width"] # compute the size of the object dimA = dA / pixelsPerMetric dimB = dB / pixelsPerMetric if num == num: iteml = larger(dimA, dimB) print("Screw Length (RAW): " + str(iteml)) iteml = sizeVexScrew(iteml) print("Rounded Length: " + str(iteml)) # draw the object sizes on the image if args2.show: cv2.putText(orig, "{:.5f}in".format(larger(dimA, dimB)), (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) cv2.putText(orig, "{:.3f}in".format(iteml), # print screw length (int(trbrX + 20), int(trbrY + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) # show the output image cv2.imshow("Image", orig) cv2.waitKey(0) # Screw Sizing