You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
377 lines
14 KiB
Python
377 lines
14 KiB
Python
# import the necessary packages
|
|
#from imutils import perspective
|
|
from imutils import contours
|
|
import numpy as np
|
|
import argparse
|
|
import imutils
|
|
import cv2
|
|
import math
|
|
import time
|
|
|
|
itemw = 0
|
|
itemh = 0
|
|
|
|
|
|
def midpoint(ptA, ptB):
|
|
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
|
|
|
|
|
def sizeVexScrew(iteml):
|
|
# Screw Sizing code
|
|
# subtract screw head size to find thread length
|
|
shead = 0.1
|
|
iteml -= shead
|
|
#print("Thread Length: " + str(iteml))
|
|
iteml *= 8
|
|
iteml = round(iteml)
|
|
iteml /= 8
|
|
return iteml
|
|
|
|
|
|
def sizeStandoff(iteml):
|
|
# Standoff Sizing code
|
|
iteml *= 2
|
|
iteml = round(iteml)
|
|
iteml /= 2
|
|
return iteml
|
|
|
|
|
|
def larger(a, b):
|
|
if a >= b:
|
|
return a
|
|
else:
|
|
return b
|
|
|
|
|
|
def smaller(a, b):
|
|
if a < b:
|
|
return a
|
|
else:
|
|
return b
|
|
|
|
|
|
def near(a, b, close):
|
|
if abs(a-b) < close:
|
|
return True
|
|
return False
|
|
|
|
|
|
def swap(a, b):
|
|
tmp = a
|
|
a = b
|
|
b = tmp
|
|
"""
|
|
# construct the argument parse and parse the arguments
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("-i", "--image", required=True,
|
|
help="path to the input image")
|
|
#ap.add_argument("-c", "--cascade", required=True,
|
|
# help="path to the cascade")
|
|
ap.add_argument("-w", "--width", type=float, required=True,
|
|
help="width of the left-most object in the image (in inches)")
|
|
ap.add_argument("-n", "--number", type=int, required=False,
|
|
help="object # to measure (from left to right)")
|
|
ap.add_argument("-s", "--show", action="store_true",
|
|
help="show on the screen")
|
|
args = vars(ap.parse_args())
|
|
args2 = ap.parse_args()"""
|
|
def detect(calibration_width, img_file, show, quick):
|
|
list = []
|
|
#if type(args["number"]) == type(selected):
|
|
# selected = args["number"]
|
|
|
|
# load the image, convert it to grayscale, and blur it slightly
|
|
image = None
|
|
#print(str(type(img_file)))
|
|
if str(type(img_file)) == "<class 'numpy.ndarray'>":
|
|
image = img_file.copy()
|
|
else:
|
|
image = cv2.imread(img_file)
|
|
|
|
#image = img_file.copy()
|
|
image = cv2.resize(image, (math.floor(image.shape[1]*0.5), math.floor(image.shape[0]*0.5)))
|
|
#image = cv2.resize(image, (1000, int(image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
|
|
|
|
if show and not quick:
|
|
cv2.namedWindow("Item Sorter")
|
|
cv2.imshow("Item Sorter", image)
|
|
cv2.waitKey(0)
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
|
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
|
# perform edge detection, then perform a dilation + erosion to
|
|
# close gaps in between object edges
|
|
edged = cv2.Canny(gray, 50, 100)
|
|
edged = cv2.dilate(edged, None, iterations=2)
|
|
edged = cv2.erode(edged, None, iterations=2)
|
|
edged = cv2.dilate(edged, None, iterations=1)
|
|
edged = cv2.erode(edged, None, iterations=1)
|
|
edged = cv2.dilate(edged, None, iterations=1)
|
|
#edged = cv2.erode(edged, None, iterations=1)
|
|
#edged = cv2.dilate(edged, None, iterations=1)
|
|
if show and not quick:
|
|
cv2.imshow("Item Sorter", edged)
|
|
cv2.waitKey(0)
|
|
# find contours in the edge map
|
|
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
# sort the contours from left-to-right and initialize the
|
|
# 'pixels per metric' calibration variable
|
|
#(cnts, _) = contours.sort_contours(cnts)
|
|
pixelsPerMetric = None
|
|
num = 0
|
|
|
|
# Calibration loop
|
|
"""
|
|
for c in cnts:
|
|
# if the contour is not sufficiently large, ignore it
|
|
if cv2.contourArea(c) < 100:
|
|
continue
|
|
# compute the rotated bounding box of the contour
|
|
orig = image.copy()
|
|
box = cv2.minAreaRect(c)
|
|
# xpos,ypos,w,h = cv2.boundingRect(c)
|
|
# crop_img = orig[ypos:ypos+h, xpos:xpos+w]
|
|
# cv2.imwrite("object_images/IMG_" + str(w*h) + ".jpg", crop_img) # create training images
|
|
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
|
box = np.array(box, dtype="int")
|
|
#box = perspective.order_points(box)
|
|
(tl, tr, br, bl) = box
|
|
(tltrX, tltrY) = midpoint(tl, tr)
|
|
(blbrX, blbrY) = midpoint(bl, br)
|
|
(tlblX, tlblY) = midpoint(tl, bl)
|
|
(trbrX, trbrY) = midpoint(tr, br)
|
|
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
|
np.array((blbrX, blbrY, 0)))
|
|
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
|
np.array((trbrX, trbrY, 0)))
|
|
area_box = dA * dB
|
|
(x, y), radius = cv2.minEnclosingCircle(c)
|
|
area_contour = cv2.contourArea(c)
|
|
area_circle = math.pi * pow(radius, 2)
|
|
boxiness = area_contour / area_box
|
|
circleness = area_contour / area_circle
|
|
circular = False
|
|
rectangular = False
|
|
if boxiness > circleness:
|
|
rectangular = True
|
|
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
|
else:
|
|
circular = True
|
|
cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 3)
|
|
mask = np.zeros(gray.shape, np.uint8)
|
|
cv2.drawContours(mask, [c], 0, 255, -1)
|
|
#pixelpoints = np.transpose(np.nonzero(mask))
|
|
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
|
mean_val = cv2.mean(hsv, mask=mask)
|
|
#print(str(mean_val[0]))
|
|
#print(", " + str(mean_val[0]/mean_val[2]))
|
|
#print(", " + str(mean_val[2]/mean_val[1]))
|
|
if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
|
|
# and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
|
|
pixelsPerMetric = smaller(dA, dB) / calibration_width
|
|
continue
|
|
"""
|
|
pixelsPerMetric = 25
|
|
orig = image.copy()
|
|
objtype = "Unknown"
|
|
objname = ""
|
|
# loop over the contours individually
|
|
for c in cnts:
|
|
#orig = image.copy()
|
|
num += 1
|
|
# if the contour is not sufficiently large, ignore it
|
|
#pixelsPerMetric = 75
|
|
if cv2.contourArea(c) < 300 or pixelsPerMetric is None:
|
|
continue
|
|
# compute the rotated bounding box of the contour
|
|
box = cv2.minAreaRect(c)
|
|
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
|
box = np.array(box, dtype="int")
|
|
# unpack the ordered bounding box, then compute the midpoint
|
|
# between the top-left and top-right coordinates, followed by
|
|
# the midpoint between bottom-left and bottom-right coordinates
|
|
(tl, tr, br, bl) = box
|
|
(tltrX, tltrY) = midpoint(tl, tr)
|
|
(blbrX, blbrY) = midpoint(bl, br)
|
|
# compute the midpoint between the top-left and top-right points,
|
|
# followed by the midpoint between the top-right and bottom-right
|
|
(tlblX, tlblY) = midpoint(tl, bl)
|
|
(trbrX, trbrY) = midpoint(tr, br)
|
|
# compute the Euclidean distance between the midpoints
|
|
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
|
np.array((blbrX, blbrY, 0)))
|
|
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
|
np.array((trbrX, trbrY, 0)))
|
|
|
|
dimA = dA / pixelsPerMetric
|
|
dimB = dB / pixelsPerMetric
|
|
|
|
# Item detection
|
|
area_box = dA * dB
|
|
(x, y), radius = cv2.minEnclosingCircle(c)
|
|
area_contour = cv2.contourArea(c)
|
|
area_circle = math.pi * pow(radius, 2)
|
|
boxiness = area_contour / area_box
|
|
circleness = area_contour / area_circle
|
|
circular = False
|
|
rectangular = False
|
|
if boxiness > circleness:
|
|
rectangular = True
|
|
#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
|
else:
|
|
circular = True
|
|
cv2.circle(orig, (int(x), int(y)), int(radius), (255, 0, 0), 2)
|
|
objtype = "Unknown"
|
|
itemw = larger(dimA, dimB)
|
|
itemwr = itemw
|
|
itemwr *= 8
|
|
itemwr = round(itemwr)
|
|
itemwr /= 8
|
|
itemh = smaller(dimA, dimB)
|
|
itemhr = itemh
|
|
itemhr *= 16
|
|
itemhr = round(itemhr)
|
|
itemhr /= 16
|
|
if circular and itemwr == 0.75:
|
|
objtype = "Penny"
|
|
iteml = 0
|
|
"""else:
|
|
|
|
if circular and near(radius * 2 / pixelsPerMetric, 0.4, 0.03):
|
|
# Keps nut or spacer
|
|
objtype = "Spacer"
|
|
mask = np.zeros(gray.shape, np.uint8)
|
|
cv2.drawContours(mask, [c], 0, 255, -1)
|
|
#pixelpoints = np.transpose(np.nonzero(mask))
|
|
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
|
mean_val = cv2.mean(hsv, mask=mask)
|
|
mean_rgb = cv2.mean(orig, mask=mask)
|
|
if near(mean_rgb[2], 59, 3) and near(mean_val[1], 85, 5): #and near(mean_val[2], 78, 5):
|
|
objtype = "Keps Nut"
|
|
print(str(mean_rgb[2]) + objtype + str(mean_val[1]))
|
|
elif circular and near(radius / pixelsPerMetric, 0.23, 0.02):
|
|
objtype = "Washer"
|
|
#print(str(radius * 2 / pixelsPerMetric) + objtype)
|
|
epsilon = 3 # 0.02*cv2.arcLength(c,True)
|
|
# print(str(epsilon))
|
|
approx = cv2.approxPolyDP(c, epsilon, True)
|
|
hull = cv2.convexHull(approx, returnPoints=False)
|
|
hull2 = cv2.convexHull(c)
|
|
defects = cv2.convexityDefects(c, hull)
|
|
#print(str(defects.size) + " match")
|
|
cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
|
|
cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
|
|
convexness = area_contour / cv2.contourArea(hull2)
|
|
#print(str(convexness) + " % fill")
|
|
# if not cv2.isContourConvex(approx):
|
|
# if cv2.matchShapes(hull, c, 1, 0.0) > 1:
|
|
if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
|
|
objtype = "Screw"
|
|
iteml = larger(dimA, dimB)
|
|
#print("Screw Length (RAW): " + str(iteml))
|
|
iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
|
|
#print("Rounded Length: " + str(iteml))
|
|
else:
|
|
if itemhr == 0.3125 and rectangular:
|
|
objtype = "Standoff"
|
|
iteml = sizeStandoff(itemw)
|
|
if itemhr == 0.1875 and rectangular:
|
|
objtype = "Axle"
|
|
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
|
|
"""
|
|
rows, cols = orig.shape[:2]
|
|
[vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
|
|
lefty = int((-xx*vy/vx) + yy)
|
|
righty = int(((cols-xx)*vy/vx)+yy)
|
|
# cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
|
|
slope = (lefty - righty) / (1 - cols)
|
|
angle = math.atan(slope)
|
|
xpos = x - math.cos(angle) * radius
|
|
ypos = y - math.sin(angle) * radius
|
|
xpos2 = x + math.cos(angle) * radius
|
|
ypos2 = y + math.sin(angle) * radius
|
|
if xpos > xpos2:
|
|
swap(xpos, xpos2)
|
|
swap(ypos, ypos2)
|
|
if rectangular:
|
|
cv2.line(orig, (int(xpos), int(ypos)),
|
|
(int(xpos2), int(ypos2)), (255, 127, 0), 2)
|
|
# print(str(iteml))
|
|
# draw the object sizes on the image
|
|
# cv2.putText(orig, "{:.5f}in".format(itemhr),
|
|
# (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
|
# 0.65, (255, 255, 255), 2)
|
|
if objtype != "Penny":
|
|
objtype = magicSort(c)
|
|
if objtype == "Unknown":
|
|
objtype = magicSort(c)
|
|
output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
|
|
if circular:
|
|
cv2.putText(orig, str(objtype),
|
|
(int(x - 25), int(y + radius + 20)
|
|
), cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.6, (50, 50, 220), 2)
|
|
else:
|
|
cv2.putText(orig, str(objtype),
|
|
(int(xpos2 + 10), int(ypos2 + 20)
|
|
), cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.6, (50, 50, 220), 2)
|
|
output = ""
|
|
objname = objtype;
|
|
"""
|
|
if objtype == "Screw" or objtype == "Standoff":
|
|
output = str(iteml) + "in"
|
|
objname += str(iteml)
|
|
if objtype == "Axle":
|
|
output = "{:.2f}in".format(iteml)
|
|
objname += str(itemwr)
|
|
#print(objname)
|
|
"""
|
|
list.append(objname)
|
|
if circular:
|
|
cv2.putText(orig, output, # print data
|
|
(int(x - 25), int(y + radius + 40)
|
|
), cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5, (50, 50, 220), 1)
|
|
else:
|
|
cv2.putText(orig, output, # print data
|
|
(int(xpos2 + 10), int(ypos2 + 40)
|
|
), cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5, (50, 50, 220), 1)
|
|
# show the output image
|
|
if show and not quick:
|
|
cv2.imshow("Item Sorter", orig)
|
|
#cv2.waitKey(1)
|
|
if not quick:
|
|
cv2.waitKey(0)
|
|
return (list, orig)
|
|
|
|
def magicSort(contour):
|
|
moments = cv2.moments(contour)
|
|
humoments = cv2.HuMoments(moments)
|
|
#humoments[6] = abs(humoments[6]) #it's possible for the last number to change sign if item is mirrored
|
|
#magicNumber1 = 0
|
|
#magicNumber2 = 0
|
|
name = "Unknown"
|
|
for i in range(0,7):
|
|
if humoments[i] == 0:
|
|
humoments[i] = 0.1;
|
|
humoments[i] = -1 * math.copysign(1.0, humoments[i]) * math.log10(abs(humoments[i]))
|
|
if i > 1:
|
|
humoments[i] = int(round(humoments[i][0] / 8) * 8)
|
|
if i != 4 and i != 6:
|
|
name += ", " + str(abs(int(humoments[i][0])))
|
|
#magicNumber1 += abs(humoments[i][0])
|
|
else:
|
|
humoments[i] = int(round(humoments[i][0] * 4) * 16)
|
|
name += ", " + str(abs(int(humoments[i][0])))
|
|
#magicNumber2 += abs(humoments[i][0])
|
|
#magicNumber += humoments[i][0]
|
|
#print(str(humoments))
|
|
#print(magicNumber)
|
|
#name = "Unknown: " + str(int(magicNumber1)) + ", " + str(int(magicNumber2))
|
|
#print(name)
|
|
return name |