Files
compiler-the-translators/src/symbol_table.c
Partho Bhattacharya cca01eb0b5 working on tabel
2025-03-28 14:49:17 -04:00

870 lines
31 KiB
C

/* Symbol Table */
/* The Translators - Spring 2025 */
#include "symbol_table.h"
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
char *typey = "type";
char *funy = "function";
TableNode *funprime;
TableNode *arrayprim;
extern SymbolTable *cur;
TableNode *integ;
TableNode *addr;
TableNode *chara;
TableNode *stri;
TableNode *boo;
TableNode *recprime;
TableNode *funtypeprime;
TableNode *undefined;
typedef enum {
// First 4 below are primitive types that are all encapsulated in
// primitive type
// TYPE_INTEGER,
// TYPE_CHARACTER,
// TYPE_BOOLEAN,
// TYPE_ADDRESS,
// Type String is an array of char enclosed in double quotes per lexer
TYPE_STRING = 1,
// Array can be multidimensional. Information should be stored here
TYPE_ARRAY = 2,
// Record is user defined types
TYPE_RECORD = 3,
// Declaring what type a particular function is without as
TYPE_FUNCTION_DECLARATION = 4,
// Declaring what type a particular function is with as
// TYPE_AS_FUNCTION_DECLARATION,
// Declaring what type a function is (what the parameters and output
// are)
TYPE_FUNCTION_TYPE = 5,
// The Type being pointed to by the first 4 above that only stores the
// size
TYPE_PRIMITIVE = 6,
//likely NULL
TYPE_ALL_ELSE = 7,
TYPE_UNDEFINED = 8
} types;
/* put in symbol_table.h
typedef struct{
int size; if(strcmp(getType(tn),getName(integ))==0){
return
}
}primitive_info;
typedef struct{
int length;
char* location;
}string_info;
typedef struct{
int numofdimensions;
//the above value tells you how long the below array is. For example if num
of dimensions is 5, I can store 1,3,2,5,9 to define > int* sizesofdimensions;
TableNode* typeofarray;
}array_info;
typedef struct{
//similar to above we define a record to hold the number of elements and an
array of tablenodes (types) that it contains in the order specified by the user
int numofelements;
TableNode* listoftypes;
}record_info;
typedef struct{
int startlinenumber;
bool regularoras;
}function_declaration_info;
typedef struct{
TableNode* parameter;
TableNode* returntype;
}function_type_info;
typedef union {
PrimAdInfo* primitive_info;
ArrayAdInfo* array_info;
RecAdInfo* record_info;
StringAdInfo* string_info;
FunDecAdInfo* func_dec_info;
FunTypeAdInfo* func_type_info;
}AdInfo;
*/
// primitive additional info only stores the size of that type
AdInfo *CreatePrimitiveInfo(int size) {
AdInfo *info = (AdInfo *)malloc(sizeof(AdInfo));
info->PrimAdInfo = (primitive_info *)malloc(sizeof(primitive_info));
info->PrimAdInfo->size = size;
return info;
}
// only gets the size of a primitive type
int getPrimSize(TableNode *definition) {
if (definition == NULL){
printf("passed an NULL entry to getPrimSize function. Invalid.\n");
return -1;
}
if (definition->additionalinfo == NULL){
printf("node has NULL additionalinfo. Invalid.\n");
return -1;
}
if (strcmp(getType(definition), "primitive") != 0) {
printf("not checking the size of a primitive -- invalid op\n");
return 0;
}
return definition->additionalinfo->PrimAdInfo->size;
}
// probably don't need the below structure since can create from an array
/*string_info* CreateStringInfo(int length, char* loc){
string_info* stringy = (string_info*)malloc(sizeof(string_info));
stringy.length=length;
char* location = loc;
return stringy;
}
*/
// Only information stored in array info is the number of dimensions and the
// type stored in the array per professor, the actual size of the array is
// calculated at runtime so bounds checking only needs to be done then
AdInfo *CreateArrayInfo(int dim, /*int* sizes,*/ TableNode *type) {
AdInfo *info = (AdInfo *)malloc(sizeof(AdInfo));
info->ArrayAdInfo = (array_info *)malloc(sizeof(array_info));
info->ArrayAdInfo->numofdimensions = dim;
info->ArrayAdInfo->typeofarray = type;
// avoiding storing any types like below
// int* dimensionsizes = loc;
return info;
}
// This gets the number of dimensions from array info
int getNumArrDim(TableNode *definition) {
if (definition == NULL){
printf("passed an NULL entry to getNumArrDim function. Invalid.\n");
return -1;
}
if (strcmp(getType(definition), "array") != 0) {
printf("not checking the dim of an array -- invalid op\n");
return 0;
}
return definition->additionalinfo->ArrayAdInfo->numofdimensions;
}
// This gets the type stored in an array from arrtype. It returns a reference to
// the entry of that type
TableNode *getArrType(TableNode *definition) {
if (strcmp(getType(definition), "array") != 0) {
printf("not checking the type of an array -- invalid op\n");
return NULL;
}
return definition->additionalinfo->ArrayAdInfo->typeofarray;
}
// Record type currently stores the number of elements as well as the types, in
// order, of what make up that type in an array. Unfortunately this second part
// should probably instead be replaced by a reference to a scope in which those
// elements are found.
AdInfo *CreateRecordInfo(int length, SymbolTable *recordScope) {
AdInfo *info = (AdInfo *)malloc(sizeof(AdInfo));
info->RecAdInfo = (record_info *)malloc(sizeof(record_info));
info->RecAdInfo->numofelements = length;
// replace below with reference to a scope, not an array
info->RecAdInfo->recordScope = recordScope;
return info;
}
// This gets the number of elements that make up a record.
// Perhaps this may not be needed since we need to iterate over all elements
// anyways.
int getRecLength(TableNode *definition) {
if (strcmp(getType(definition), "record") != 0) {
printf("not checking the length of an record -- invalid op\n");
return 0;
}
return definition->additionalinfo->RecAdInfo->numofelements;
}
// This gets the array. Needs to up be updated to get the scope instead
SymbolTable *getRecList(TableNode *definition) {
if (strcmp(getType(definition), "record") != 0) {
printf("not checking the list of types of a record -- invalid "
"op\n");
return NULL;
}
return definition->additionalinfo->RecAdInfo->recordScope;
}
TableNode* setRecSize(TableNode* tn, int n){
if(tn == NULL){
printf("passed in NULL entry for setRecSize. Invalid\n");
return NULL;
}
tn->additionalinfo->RecAdInfo->numofelements = n;
return tn;
}
int getRecSize(SymbolTable* tn){
int s = 0;
TableNode* cur = getFirstEntry(tn);
while(getNextEntry(cur) != NULL){
s++;
cur = getNextEntry(cur);
}
return s;
}
// below function takes a bool to see if parameter should be decomposed or not
assignable:
ID {$$ = $1; }
| assignable ablock {$$ = getName(getReturn(look_up(cur, $1)));}
| assignable rec_op ID {TableNode * tn; if(NULL != (tn = table_lookup(getRecList(look_up(cur, $1)), $3)))
{$$ = getType(tn);}
}
;// note that functions only take one input and have one output
// using "as" the input record can be decomposed to give the illusion of
// multiple inputs Below function also has the line number where the function is
// first defined
AdInfo *CreateFunctionDeclarationInfo(int line, bool asorregular) {
AdInfo *info = (AdInfo *)malloc(sizeof(AdInfo));
info->FunDecAdInfo = (function_declaration_info *)malloc(
sizeof(function_declaration_info));
info->FunDecAdInfo->startlinenumber = line;
info->FunDecAdInfo->regularoras = asorregular;
return info;
}
// gets the line at which the function was first defined. (Can be used to print
// out in table if needed)
int getStartLine(TableNode *definition) {
if (strcmp(getType(definition), "primitive function") != 0) {
printf("not checking the start line of a function -- invalid "
"op\n");
return 0;
}
return definition->additionalinfo->FunDecAdInfo->startlinenumber;
}
TableNode* setStartLine(TableNode* tn, int start){
if(tn == NULL){
printf("passing in a NULL entry to setStartLine. invalid\n");
return NULL;
}
tn->additionalinfo->FunDecAdInfo->startlinenumber = start;
return tn;
}
// checks if "as" keyword was used for function definition. Either 0 or 1 for
// not used or used.
bool getAsKeyword(TableNode *definition) {
if (strcmp(getType(definition), "primitive function") != 0) {
printf("not checking if a function is called with as or not -- "
"invalid op\n");
return NULL;
}
return definition->additionalinfo->FunDecAdInfo->regularoras;
}
TableNode* setAsKeyword(TableNode* tn, bool as){
if(tn == NULL){
printf("passing in a NULL entry to setAsKeyword. invalid\n");
return NULL;
}
tn->additionalinfo->FunDecAdInfo->regularoras = as;
return tn;
}
// stores the type of a function (parameter type and return type)
AdInfo *CreateFunctionTypeInfo(TableNode *parameter, TableNode *returntype) {
AdInfo *info = (AdInfo *)malloc(sizeof(AdInfo));
info->FunTypeAdInfo =
(function_type_info *)malloc(sizeof(function_type_info));
info->FunTypeAdInfo->parameter = parameter;
info->FunTypeAdInfo->returntype = returntype;
return info;
}
// returns parameter type of a function
TableNode *getParameter(TableNode *definition) {
if (strcmp(getType(definition), "primitive function type") != 0) {
printf(
"not checking the parameter of a function -- invalid op\n");
return NULL;
}
return definition->additionalinfo->FunTypeAdInfo->parameter;
}
// returns return type of a function
TableNode *getReturn(TableNode *definition) {
if (strcmp(getType(definition), "primitive function type") != 0) {
printf("not checking the return of a function -- invalid op\n");
return NULL;
}
return definition->additionalinfo->FunTypeAdInfo->returntype;
}
// creates a new scope (not the top scope though)
SymbolTable *CreateScope(SymbolTable *ParentScope, int Line, int Column) {
SymbolTable *table = (SymbolTable *)malloc(sizeof(SymbolTable));
table->Line_Number = Line;
table->Column_Number = Column;
table->Parent_Scope = ParentScope;
table->Children_Scope = NULL;
table->entries = NULL;
if (ParentScope != NULL) {
if (ParentScope->Children_Scope == NULL) {
ListOfTable *newEntry =
(ListOfTable *)malloc(sizeof(ListOfTable));
newEntry->next = NULL;
// newEntry->prev = NULL;
newEntry->table = table;
ParentScope->Children_Scope = newEntry;
} else {
ListOfTable *newEntry =
(ListOfTable *)malloc(sizeof(ListOfTable));
// newEntry->prev = NULL;
newEntry->table = table;
ListOfTable *oldEntry = ParentScope->Children_Scope;
ParentScope->Children_Scope = newEntry;
newEntry->next = oldEntry;
}
}
return table;
}
// create entry just for things below top level scope
// This function defines the integer, address, character, and bool primitive
// types
SymbolTable *init(SymbolTable *start) {
if (start->Parent_Scope != NULL) {
printf(
"Cannot initialize a scope that is not the parent scope\n");
return NULL;
}
integ = (TableNode *)malloc(sizeof(TableNode));
addr = (TableNode *)malloc(sizeof(TableNode));
chara = (TableNode *)malloc(sizeof(TableNode));
stri = (TableNode *)malloc(sizeof(TableNode));
boo = (TableNode *)malloc(sizeof(TableNode));
// TableNode* arr = (TableNode*)malloc(sizeof(SymbolTable));
start->entries = integ;
integ->next = addr;
addr->next = chara;
chara->next = stri;
stri->next = boo;
// boo->next = arr;
boo->next = NULL;
integ->theName = "integer";
addr->theName = "address";
chara->theName = "character";
boo->theName = "Boolean";
stri->theName = "string";
// arr->theName= "array"
// root TableNode that all are pointing to but not in table
// This is only to solve the issue that all entries must have a name and
// a type and the type must point to an actual table entry Again, this
// primitive table entry isn't in the top scope. It is outside the top
// scope and is only there to facilitate the fact that these are
// primitive
TableNode *prime = (TableNode *)malloc(sizeof(TableNode));
prime->theName = "primitive";
prime->theType = NULL;
prime->additionalinfo = NULL;
prime->next = NULL;
// not sure exatly how to get array types to look right so using a dummy
// Table Node below and updating the print symbol table function to
// access the additional information to print for array types, similar
// to function types when printing symbol table, if array is seen
arrayprim = (TableNode *)malloc(sizeof(TableNode));
arrayprim->theName = "array";
arrayprim->theType = NULL;
arrayprim->additionalinfo = NULL;
prime->next = NULL;
// funprime = CreateEntry(NULL,NULL,strdup("function primitive"),NULL);
// similar workaround to arrays above
funprime = (TableNode *)malloc(sizeof(TableNode));
funprime->theName = "primitive function";
funprime->theType = NULL;
funprime->additionalinfo = NULL;
funprime->next = NULL;
// record
recprime = (TableNode *)malloc(sizeof(TableNode));
recprime->theName = "record";
recprime->theType = NULL;
recprime->additionalinfo = NULL;
recprime->next = NULL;
funtypeprime = (TableNode *)malloc(sizeof(TableNode));
funtypeprime->theName = "primitive function type";
funtypeprime->theType = NULL;
funtypeprime->additionalinfo = NULL;
funtypeprime->next = NULL;
undefined = (TableNode *)malloc(sizeof(TableNode));
undefined->theName = "undefined";
undefined->theType = NULL;
undefined->additionalinfo = NULL;
undefined->next = NULL;
integ->theType = prime;
addr->theType = prime;
chara->theType = prime;
stri->theType = arrayprim;
boo->theType = prime;
// arr->theType=arrayprim;
// filling in all the values for the additional info for initial types
// These numbers below for create primitive specifically are supposed to
// be the size of these primitive types. We can change these if needed
// to not be hard coded numbers as a reminder, stri below is defined as
// a one dimensional array of characters
integ->additionalinfo = CreatePrimitiveInfo(4);
addr->additionalinfo = CreatePrimitiveInfo(8);
chara->additionalinfo = CreatePrimitiveInfo(1);
stri->additionalinfo = CreateArrayInfo(1, chara);
boo->additionalinfo = CreatePrimitiveInfo(1);
// addr->additionalinfo = CreatePrimitiveInfo(8);
start->Line_Number = 1;
start->Column_Number = 1;
start->Parent_Scope = NULL;
start->Children_Scope = NULL;
return start;
}
/*
TableNode* integ;
TableNode* addr;
TableNode* chara;
TableNode* stri;
TableNode* boo;
TableNode* recprime;
TableNode* funtypeprime;
*/
TableNode* populateTypeAndInfo(TableNode* tn, TableNode* type, AdInfo* info){
if(tn == NULL){
printf("passed in an invalid table node to modify (NULL).\n");
return NULL;
}
if(type == NULL){
printf("passed in a NULL type reference to populate a table node. Invalid.\n");
return NULL;
}
if(info == NULL){
printf("passed in a NULL info reference to populate a table node. Invalid.\n");
return NULL;
}
tn->theType = type;
tn->additionalinfo = info;
//returning reference to modified table node
return tn;
}
int getAdInfoType(TableNode* tn){
if(tn == NULL){
printf("passing in NULL table entry. Invalid\n");
return -1;
}
if(tn->theType == NULL){
printf("Entry being passed in has a null reference for theType. Invalid.\n");
return -1;
}
if(strcmp(getType(tn),getName(integ))==0){
return TYPE_PRIMITIVE;
}
if(strcmp(getType(tn),getName(addr))==0){
return TYPE_PRIMITIVE;
}
if(strcmp(getType(tn),getName(chara))==0){
return TYPE_PRIMITIVE;
}
if(strcmp(getType(tn),getName(stri))==0){
return TYPE_ARRAY;
}
if(strcmp(getType(tn),getName(boo))==0){
return TYPE_PRIMITIVE;
}
if(strcmp(getType(tn),getName(recprime))==0){
return TYPE_RECORD;
}
if(strcmp(getType(tn),getName(funtypeprime))==0){
return TYPE_FUNCTION_TYPE;
}
if(strcmp(getType(tn),getName(arrayprim))==0){
return TYPE_ARRAY;
}
if(strcmp(getType(tn),getName(undefined))==0){
return TYPE_UNDEFINED;
}
else{
return TYPE_FUNCTION_DECLARATION;
}
}
TableNode *CreateEntry(SymbolTable *table, TableNode *typeOf, char *id,
AdInfo *ad) {
if (table == NULL) {
printf("Null reference to table");
return NULL;
}
/*
TableNode* topDef = (table_lookup(getAncestor(table),typeOf));
if(topDef == NULL){
printf("This type is not defined at the top level\n");
return NULL;
}
*/
if (typeOf == NULL) {
printf("This is not pointing to a proper definition\n");
return NULL;
}
TableNode *newEntry = (TableNode *)malloc(sizeof(TableNode));
newEntry->theType = typeOf /*topDef*/;
newEntry->theName = id;
newEntry->additionalinfo = ad;
if (table->entries == NULL) {
table->entries = newEntry;
return newEntry;
} else {
TableNode *oldEntry = table->entries;
table->entries = newEntry;
newEntry->next = oldEntry;
return newEntry;
}
}
char *getType(TableNode *tn) {
if(tn == NULL){
printf("passed a NULL table entry to getType\n");
return getName(undefined);
}
if(tn->theType == NULL){
printf("type of entry is currently NULL, undefined type \n");
return getName(undefined);
}
return tn->theType->theName; }
char *getName(TableNode *tn) {
if(tn == NULL){
printf("passed a NULL table entry to getName\n");
return undefined->theName;
}
if(tn->theName == NULL){
printf("name of entry is currently NULL, undefined \n");
return undefined->theName;
}
return tn->theName;
}
int getLine(SymbolTable *st) { return st->Line_Number; }
int getColumn(SymbolTable *st) { return st->Column_Number; }
TableNode* addName(TableNode *tn, char* str){
if(tn == NULL){
printf("passed a Null table node to the addName function. Invalid./n");
return tn;
}
}
SymbolTable* setLineNumber(SymbolTable *st,int line){
if(st == NULL){
printf("passed a Null Symbol Table to the setLineNumber function. Invalid./n");
return st;
}
st->Line_Number = line;
return st;
}
SymbolTable* setColumnNumber(SymbolTable *st,int column){
if(st == NULL){
printf("passed a Null Symbol Table to the setColumnNumber function. Invalid./n");
return st;
}
st->Line_Number = column;
return st;
}
/*
//we use false for type defs and true for functions for parameter of typeOf
TableNode* Define(SymbolTable* table, bool typeOf, char* id) {
if(table ==NULL || table->Parent_Scope != NULL){
printf("No valid table given for header defs\n");
return NULL;
}
TableNode* newEntry = (TableNode*)malloc(sizeof(TableNode));
//possible issues with referencing text instead of heap
if(typeOf == 0){
newEntry->theType = typey;
}
if (typeOf == 1){
newEntry->theType = funy;
}
if(table_lookup(table,id) != NULL){
printf("already defined at the top level, can't define duplicate
names\n"); return NULL;
}
newEntry->theName = id;
if (table->entries == NULL) {
table->entries = newEntry;
return newEntry;
} else {
TableNode* oldEntry = table->entries;
table->entries = newEntry;
newEntry->next = oldEntry;
return newEntry;
}
}
*/
//only check table that is given
TableNode *table_lookup(SymbolTable *table, char *x) {
TableNode *entrie = table->entries;
for (; entrie != NULL; entrie = entrie->next) {
if (!strcmp(entrie->theName, x)) {
return entrie;
}
}
return undefined;
}
//check current table and all parents
TableNode *look_up(SymbolTable *table, char *x) {
if (table == NULL) {
printf("passed in empty scope. error.\n");
return undefined;
}
TableNode *ret = table_lookup(table, x);
if (ret != NULL && ret != undefined) {
return ret;
}
printf("could not find %s in scope that started at line %d and column %d so moving up a scope\n"
,x,getLine(table),getColumn(table));
return look_up(table->Parent_Scope, x);
}
void print_symbol_table(SymbolTable *table, FILE *file_ptr) {
return;
if (table->Parent_Scope == NULL) {
fprintf(file_ptr, "%-17s: %-6s : %-6s : %-21s: %-28s\n", "NAME",
"SCOPE", "PARENT", "TYPE", "Extra annotation");
}
TableNode *entrie = table->entries;
fprintf(file_ptr, "-----------------:--------:--------:----------------"
"------:---------"
"--------------------\n");
int parant_scope = 0;
int current_scope = 0;
if (table->Parent_Scope != NULL) {
parant_scope = table->Parent_Scope->Line_Number * 1000 +
table->Parent_Scope->Column_Number;
current_scope =
table->Line_Number * 1000 + table->Column_Number;
} else {
current_scope = 1001;
}
if (entrie == NULL) {
fprintf(file_ptr, "%-17s: %06d : %06d : %-21s: %-28s\n", "",
current_scope, parant_scope, "", "Empty Scope");
}
for (;entrie != NULL; entrie = entrie->next) {
if (getAdInfoType(entrie) == TYPE_ARRAY){
if (parant_scope == 0) {
fprintf(file_ptr,
"%-17s: %06d : : %-21d -> %-21s: %-28s\n",
entrie->theName, current_scope,
entrie->additionalinfo->ArrayAdInfo->numofdimensions,
entrie->additionalinfo->ArrayAdInfo->typeofarray->theName,
"Type of Array");
} else {
fprintf(file_ptr, "%-17s: %06d : %06d : %-21d -> %-21s: %-28s\n",
entrie->theName, current_scope, parant_scope,
entrie->additionalinfo->ArrayAdInfo->numofdimensions,
entrie->additionalinfo->ArrayAdInfo->typeofarray->theName,
"Type of Array");
}
}
if (getAdInfoType(entrie) == TYPE_RECORD){
if (parant_scope == 0) {
fprintf(file_ptr,
"%-17s: %06d : :%-21s: elements-%-28d\n",
entrie->theName, current_scope,
"record",
entrie->additionalinfo->RecAdInfo->numofelements);
} else {
fprintf(file_ptr, "%-17s: %06d : %06d : %-21s: elements-%-28d\n",
entrie->theName, current_scope, parant_scope,
"record",
entrie->additionalinfo->RecAdInfo->numofelements);
}
}
if (getAdInfoType(entrie) == TYPE_PRIMITIVE){
if (parant_scope == 0) {
fprintf(file_ptr,
"%-17s: %06d : :%-21s: size-%-28d bytes\n",
entrie->theName, current_scope,
"Primitive",
entrie->additionalinfo->PrimAdInfo->size);
} else {
fprintf(file_ptr, "%-17s: %06d : %06d : %-21s: size-%-28d bytes\n",
entrie->theName, current_scope, parant_scope,
"Primitive",
entrie->additionalinfo->PrimAdInfo->size);
}
}
if (getAdInfoType(entrie) == TYPE_FUNCTION_TYPE){
if (parant_scope == 0) {
fprintf(file_ptr,
"%-17s: %06d : : %-21s -> %-21s: %-28s\n",
entrie->theName, current_scope,
entrie->additionalinfo->FunTypeAdInfo->parameter->theName,
entrie->additionalinfo->FunTypeAdInfo->returntype->theName,
"Type of Function");
} else {
fprintf(file_ptr, "%-17s: %06d : %06d : %-21s -> %-21s: %-28s\n",
entrie->theName, current_scope, parant_scope,
entrie->additionalinfo->FunTypeAdInfo->parameter->theName,
entrie->additionalinfo->FunTypeAdInfo->returntype->theName,
"Type of Function");
}
}
if (getAdInfoType(entrie) == TYPE_FUNCTION_DECLARATION){
if (parant_scope == 0) {
fprintf(file_ptr,
"%-17s: %06d : :%-21s: %-28s\n",
entrie->theName, current_scope,
getType(entrie),
"Function");
} else {
fprintf(file_ptr, "%-17s: %06d : %06d : %-21s: %-28s\n",
entrie->theName, current_scope, parant_scope,
getType(entrie),
"Function");
}
}
}
if (table->Children_Scope != NULL) {
ListOfTable *node = table->Children_Scope;
for (; node != NULL; node = node->next) {
print_symbol_table(node->table, file_ptr);
}
}
if (table->Parent_Scope == NULL) {
fprintf(file_ptr, "-----------------:--------:--------:--------"
"--------------:-------"
"----------------------\n");
}
}
//get top most symbol table
SymbolTable *getAncestor(SymbolTable *table) {
if(table == NULL){
printf("passing a NULL reference to getAncestor. Invalid.\n");
return NULL;
}
if (table->Parent_Scope == NULL) {
// if table has no parent, return itself
return table;
} else {
// call function recursively to grab ancestor
return getAncestor(table->Parent_Scope);
}
}
SymbolTable *removeEntry(SymbolTable *scope, char *search) {
if (scope == NULL) {
return NULL;
}
if (scope->entries == NULL) {
return scope;
}
TableNode *prev = NULL;
TableNode *now = scope->entries;
while (now != NULL) {
if (strcmp(getName(now), search) == 0) {
if (prev == NULL) {
scope->entries = getNextEntry(now);
return scope;
} else {
prev->next = now->next;
return scope;
}
}
prev = now;
now = now->next;
}
return scope;
}
//almost certainly don't need to use the below function since type checking happens by passing types up the grammar
bool typeCheck(char *firstID, char *secondID) {
TableNode *entry1 = look_up(cur, firstID);
TableNode *entry2 = look_up(cur, secondID);
if (entry1 == NULL) {
printf("first type not defined\n");
return false;
}
if (entry2 == NULL) {
printf("second type not defined\n");
return false;
}
if (table_lookup(getAncestor(cur), getType(look_up(cur, firstID))) ==
table_lookup(getAncestor(cur), getType(look_up(cur, secondID)))) {
if (strcmp(getType(look_up(cur, firstID)), "array") == 0) {
if (look_up(cur, firstID)
->additionalinfo->ArrayAdInfo
->numofdimensions ==
look_up(cur, secondID)
->additionalinfo->ArrayAdInfo
->numofdimensions &&
look_up(cur, firstID)
->additionalinfo->ArrayAdInfo
->typeofarray ==
look_up(cur, secondID)
->additionalinfo->ArrayAdInfo
->typeofarray) {
return true;
} else {
return false;
}
}
return true;
}
return false;
}
SymbolTable *getParent(SymbolTable *st) { return st->Parent_Scope; }
ListOfTable *getChildren(SymbolTable *st) { return st->Children_Scope; }
SymbolTable *getFirstChild(ListOfTable *lt) { return lt->table; }
ListOfTable *getRestOfChildren(ListOfTable *lt) { return lt->next; }
TableNode *getFirstEntry(SymbolTable *st) { return st->entries; }
TableNode *getNextEntry(TableNode *tn) { return tn->next; }
// uncomment the below main function along with the headers above for a simple
// standalone test of table and entry creation
/*
int main(){
char* String = "STRING";
char* X = "X";
SymbolTable* Second = CreateScope(NULL, 2,2);
printf("Line number is %d, Column number of scope is
%d\n",Second->Line_Number,Second->Column_Number); TableNode* First_Entry =
CreateEntry(Second,String,X);
printf("The type of the first entry is %s\n",First_Entry->theType);
return 0;
}
*/