split acrylic art code into separate versions

master
shark 6 years ago
parent daf46856eb
commit d0d26492d3

@ -0,0 +1,103 @@
// Library free version for regular RGB LEDs (tinkercad), using HSV --> RGB code not by me
//#include < FastLED.h >
int light = 0;
int oldavg = 0;
void setup() {
Serial.begin(9600);
pinMode(13, OUTPUT);
}
void loop() {
int ss = 20; // sample size for light sensor
int average = 0;
for (int x = 0; x < ss; x++) {
//average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization
// linearization using resistance to lux relationship
average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08;
delay(3);
}
average /= ss;
//Serial.println(average);
if (oldavg == 0) {
oldavg = average;
}
digitalWrite(13, HIGH);
if (oldavg != average) {
Serial.print("Goal: ");
Serial.println(average);
}
while (oldavg < average) {
oldavg += 1;
setColor(oldavg);
}
while (oldavg > average) {
oldavg -= 1;
setColor(oldavg);
}
digitalWrite(13, LOW);
}
void setColor(int hue) {
byte RedLight;
byte GreenLight;
byte BlueLight;
// this is the algorithm to convert from RGB to HSV
byte h = hue;
byte s = 255;
byte v = 60;
h = (h * 192) / 256; // 0..191
unsigned int i = h / 32; // We want a value of 0 thru 5
unsigned int f = (h % 32) * 8; // 'fractional' part of 'i' 0..248 in jumps
unsigned int sInv = 255 - s; // 0 -> 0xff, 0xff -> 0
unsigned int fInv = 255 - f; // 0 -> 0xff, 0xff -> 0
byte pv = v * sInv / 256; // pv will be in range 0 - 255
byte qv = v * (256 - s * f / 256) / 256;
byte tv = v * (256 - s * fInv / 256) / 256;
switch (i) {
case 0:
RedLight = v;
GreenLight = tv;
BlueLight = pv;
break;
case 1:
RedLight = qv;
GreenLight = v;
BlueLight = pv;
break;
case 2:
RedLight = pv;
GreenLight = v;
BlueLight = tv;
break;
case 3:
RedLight = pv;
GreenLight = qv;
BlueLight = v;
break;
case 4:
RedLight = tv;
GreenLight = pv;
BlueLight = v;
break;
case 5:
RedLight = v;
GreenLight = pv;
BlueLight = qv;
break;
}
//CRGB& color = CHSV(average, 255, 255);
Serial.print("Hue: ");
Serial.print(hue);
Serial.print(", RGB : ");
Serial.print(RedLight);
Serial.print(", ");
Serial.print(GreenLight);
Serial.print(", ");
Serial.println(BlueLight);
analogWrite(9, RedLight);
analogWrite(10, GreenLight);
analogWrite(11, BlueLight);
}

@ -1,4 +1,4 @@
#include < FastLED.h > #include <FastLED.h>
int light = 0; int light = 0;
int r = 9; // define pins int r = 9; // define pins
int g = 10; int g = 10;
@ -15,7 +15,7 @@ void loop() {
for (int x = 0; x < ss; x++) { for (int x = 0; x < ss; x++) {
//average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization //average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization
//linearization using resistance to lux relationship // linearization using resistance to lux relationship
average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08; average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08;
delay(3); delay(3);
} }
@ -54,110 +54,3 @@ void setColor(int hue) {
Serial.print(", "); Serial.print(", ");
Serial.println(color.b); Serial.println(color.b);
} }
// END OF CODE
/*// Library free version for regular RGB LEDs (tinkercad), using HSV --> RGB code not by me
//#include < FastLED.h >
int light = 0;
int oldavg = 0;
void setup() {
Serial.begin(9600);
pinMode(13, OUTPUT);
}
void loop() {
int ss = 20; // sample size for light sensor
int average = 0;
for (int x = 0; x < ss; x++) {
//average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization
//linearization using resistance to lux relationship
average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08;
delay(3);
}
average /= ss;
//Serial.println(average);
if (oldavg == 0) {
oldavg = average;
}
digitalWrite(13, HIGH);
if (oldavg != average) {
Serial.print("Goal: ");
Serial.println(average);
}
while (oldavg < average) {
oldavg += 1;
setColor(oldavg);
}
while (oldavg > average) {
oldavg -= 1;
setColor(oldavg);
}
digitalWrite(13, LOW);
}
void SetColor(int hue) {
byte RedLight;
byte GreenLight;
byte BlueLight;
// this is the algorithm to convert from RGB to HSV
byte h = hue;
byte s = 255;
byte v = 60;
h = (h * 192) / 256; // 0..191
unsigned int i = h / 32; // We want a value of 0 thru 5
unsigned int f = (h % 32) * 8; // 'fractional' part of 'i' 0..248 in jumps
unsigned int sInv = 255 - s; // 0 -> 0xff, 0xff -> 0
unsigned int fInv = 255 - f; // 0 -> 0xff, 0xff -> 0
byte pv = v * sInv / 256; // pv will be in range 0 - 255
byte qv = v * (256 - s * f / 256) / 256;
byte tv = v * (256 - s * fInv / 256) / 256;
switch (i) {
case 0:
RedLight = v;
GreenLight = tv;
BlueLight = pv;
break;
case 1:
RedLight = qv;
GreenLight = v;
BlueLight = pv;
break;
case 2:
RedLight = pv;
GreenLight = v;
BlueLight = tv;
break;
case 3:
RedLight = pv;
GreenLight = qv;
BlueLight = v;
break;
case 4:
RedLight = tv;
GreenLight = pv;
BlueLight = v;
break;
case 5:
RedLight = v;
GreenLight = pv;
BlueLight = qv;
break;
}
//CRGB& color = CHSV(average, 255, 255);
Serial.print("Hue: ");
Serial.print(hue);
Serial.print(", RGB : ");
Serial.print(RedLight);
Serial.print(", ");
Serial.print(GreenLight);
Serial.print(", ");
Serial.println(BlueLight);
analogWrite(9, RedLight);
analogWrite(10, GreenLight);
analogWrite(11, BlueLight);
}*/
Loading…
Cancel
Save