|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
#include <FastLED.h>
|
|
|
|
|
#include < FastLED.h >
|
|
|
|
|
int light = 0;
|
|
|
|
|
int r = 9; // define pins
|
|
|
|
|
int g = 10;
|
|
|
|
@ -6,40 +6,41 @@ int b = 11;
|
|
|
|
|
int oldavg = 0;
|
|
|
|
|
void setup() {
|
|
|
|
|
Serial.begin(9600);
|
|
|
|
|
pinMode(13, OUTPUT);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void loop() {
|
|
|
|
|
int ss = 20; // sample size for light sensor
|
|
|
|
|
int average = 0;
|
|
|
|
|
for (int x = 0; x < ss; x++) {
|
|
|
|
|
for (int x = 0; x < ss; x++) {
|
|
|
|
|
//average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//linearization using resistance to lux relationship
|
|
|
|
|
average += (1250000.0 * pow(1023-analogRead(0), -1.4059) - 73) / 2.08;
|
|
|
|
|
average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08;
|
|
|
|
|
delay(3);
|
|
|
|
|
}
|
|
|
|
|
average /= ss;
|
|
|
|
|
//Serial.println(average);
|
|
|
|
|
if(oldavg == 0) {
|
|
|
|
|
oldavg = average;
|
|
|
|
|
}
|
|
|
|
|
if (oldavg == 0) {
|
|
|
|
|
oldavg = average;
|
|
|
|
|
}
|
|
|
|
|
digitalWrite(13, HIGH);
|
|
|
|
|
if(oldavg != average) {
|
|
|
|
|
Serial.print("Goal: ");
|
|
|
|
|
Serial.println(average);
|
|
|
|
|
if (oldavg != average) {
|
|
|
|
|
Serial.print("Goal: ");
|
|
|
|
|
Serial.println(average);
|
|
|
|
|
}
|
|
|
|
|
while(oldavg < average) {
|
|
|
|
|
oldavg += 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
while (oldavg < average) {
|
|
|
|
|
oldavg += 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
}
|
|
|
|
|
while(oldavg > average) {
|
|
|
|
|
oldavg -= 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
while (oldavg > average) {
|
|
|
|
|
oldavg -= 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
}
|
|
|
|
|
digitalWrite(13, LOW);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void setColor(int hue) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void setColor(int hue) {
|
|
|
|
|
CRGB color = CHSV(hue, 255, 255);
|
|
|
|
|
analogWrite(9, color.r);
|
|
|
|
|
analogWrite(10, color.g);
|
|
|
|
@ -58,7 +59,7 @@ void loop() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*// Library free version for regular RGB LEDs (tinkercad), using HSV --> RGB code not by me
|
|
|
|
|
//#include <FastLED.h>
|
|
|
|
|
//#include < FastLED.h >
|
|
|
|
|
int light = 0;
|
|
|
|
|
int oldavg = 0;
|
|
|
|
|
void setup() {
|
|
|
|
@ -69,49 +70,49 @@ void setup() {
|
|
|
|
|
void loop() {
|
|
|
|
|
int ss = 20; // sample size for light sensor
|
|
|
|
|
int average = 0;
|
|
|
|
|
for (int x = 0; x < ss; x++) {
|
|
|
|
|
for (int x = 0; x < ss; x++) {
|
|
|
|
|
//average += 256-log(256-analogRead(0) / 4) * (256 /5.55); // old linearization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//linearization using resistance to lux relationship
|
|
|
|
|
average += (1250000.0 * pow(1023-analogRead(0), -1.4059) - 73) / 2.08;
|
|
|
|
|
average += (1250000.0 * pow(1023 - analogRead(0), -1.4059) - 73) / 2.08;
|
|
|
|
|
delay(3);
|
|
|
|
|
}
|
|
|
|
|
average /= ss;
|
|
|
|
|
//Serial.println(average);
|
|
|
|
|
if(oldavg == 0) {
|
|
|
|
|
oldavg = average;
|
|
|
|
|
}
|
|
|
|
|
if (oldavg == 0) {
|
|
|
|
|
oldavg = average;
|
|
|
|
|
}
|
|
|
|
|
digitalWrite(13, HIGH);
|
|
|
|
|
if(oldavg != average) {
|
|
|
|
|
Serial.print("Goal: ");
|
|
|
|
|
Serial.println(average);
|
|
|
|
|
if (oldavg != average) {
|
|
|
|
|
Serial.print("Goal: ");
|
|
|
|
|
Serial.println(average);
|
|
|
|
|
}
|
|
|
|
|
while(oldavg < average) {
|
|
|
|
|
oldavg += 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
while (oldavg < average) {
|
|
|
|
|
oldavg += 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
}
|
|
|
|
|
while(oldavg > average) {
|
|
|
|
|
oldavg -= 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
while (oldavg > average) {
|
|
|
|
|
oldavg -= 1;
|
|
|
|
|
setColor(oldavg);
|
|
|
|
|
}
|
|
|
|
|
digitalWrite(13, LOW);
|
|
|
|
|
}
|
|
|
|
|
void SetColor(int hue) {
|
|
|
|
|
}
|
|
|
|
|
void SetColor(int hue) {
|
|
|
|
|
byte RedLight;
|
|
|
|
|
byte GreenLight;
|
|
|
|
|
byte BlueLight;
|
|
|
|
|
byte GreenLight;
|
|
|
|
|
byte BlueLight;
|
|
|
|
|
|
|
|
|
|
// this is the algorithm to convert from RGB to HSV
|
|
|
|
|
byte h = hue;
|
|
|
|
|
byte s = 255;
|
|
|
|
|
byte v = 60;
|
|
|
|
|
h = (h * 192) / 256; // ..191
|
|
|
|
|
unsigned int i = h / 32; // We want a value of 0 thru 5
|
|
|
|
|
unsigned int f = (h % 32) * 8; // 'fractional' part of 'i' 0..248 in jumps
|
|
|
|
|
h = (h * 192) / 256; // 0..191
|
|
|
|
|
unsigned int i = h / 32; // We want a value of 0 thru 5
|
|
|
|
|
unsigned int f = (h % 32) * 8; // 'fractional' part of 'i' 0..248 in jumps
|
|
|
|
|
|
|
|
|
|
unsigned int sInv = 255 - s; // 0 -> 0xff, 0xff -> 0
|
|
|
|
|
unsigned int fInv = 255 - f; // 0 -> 0xff, 0xff -> 0
|
|
|
|
|
byte pv = v * sInv / 256; // pv will be in range 0 - 255
|
|
|
|
|
unsigned int sInv = 255 - s; // 0 -> 0xff, 0xff -> 0
|
|
|
|
|
unsigned int fInv = 255 - f; // 0 -> 0xff, 0xff -> 0
|
|
|
|
|
byte pv = v * sInv / 256; // pv will be in range 0 - 255
|
|
|
|
|
byte qv = v * (256 - s * f / 256) / 256;
|
|
|
|
|
byte tv = v * (256 - s * fInv / 256) / 256;
|
|
|
|
|
|
|
|
|
|