Compare commits

...

4 Commits

@ -13,7 +13,7 @@ platform = https://github.com/maxgerhardt/platform-raspberrypi.git
board = pico board = pico
framework = arduino framework = arduino
platform_packages = platform_packages =
framework-arduinopico@https://github.com/earlephilhower/arduino-pico.git#c64a4a58d793ee6d24c7df7ff3ec35adac3bbb45 framework-arduinopico@https://github.com/earlephilhower/arduino-pico.git#master
board_build.core = earlephilhower board_build.core = earlephilhower
upload_port = /run/media/amelia/RPI-RP2/ upload_port = /run/media/amelia/RPI-RP2/
debug_tool = cmsis-dap debug_tool = cmsis-dap
@ -21,7 +21,6 @@ upload_protocol = cmsis-dap
monitor_speed = 115200 monitor_speed = 115200
board_build.filesystem_size = 1m board_build.filesystem_size = 1m
board_build.f_cpu = 133000000L board_build.f_cpu = 133000000L
build_flags = -O3
; board_flags = -DWIFICC=CYW43_COUNTRY_USA
lib_deps = lib_deps =
https://github.com/FastLED/FastLED#master adafruit/Adafruit NeoPixel@^1.12.0
adafruit/Adafruit NeoPXL8@^1.2.6

@ -0,0 +1,52 @@
/* FastLED_RGBW
*
* Hack to enable SK6812 RGBW strips to work with FastLED.
*
* Original code by Jim Bumgardner (http://krazydad.com).
* Modified by David Madison (http://partsnotincluded.com).
*
*/
#ifndef FastLED_RGBW_h
#define FastLED_RGBW_h
struct CRGBW {
union {
struct {
union {
uint8_t g;
uint8_t green;
};
union {
uint8_t r;
uint8_t red;
};
union {
uint8_t b;
uint8_t blue;
};
union {
uint8_t w;
uint8_t white;
};
};
uint8_t raw[4];
};
CRGBW(){}
CRGBW(uint8_t rd, uint8_t grn, uint8_t blu, uint8_t wht){
r = rd;
g = grn;
b = blu;
w = wht;
}
inline void operator = (const CRGB c) __attribute__((always_inline)){
this->r = c.r;
this->g = c.g;
this->b = c.b;
this->white = 0;
}
};
inline uint16_t getRGBWsize(uint16_t nleds){
uint16_t nbytes = nleds * 4;
if(nbytes % 3 > 0) return nbytes / 3 + 1;
else return nbytes / 3;
}
#endif

@ -3,19 +3,26 @@
#define DEBUG #define DEBUG
// Amount of color channels per pixel - i.e. RGB = 3, RGBW = 4 #define LIGHTTEST
#define PIXEL_SIZE 3
// Total LED count PER CHANNEL
// set to 128 for 4 channel, 170 for 3 channel
#define MAX_LEDS 170
// Total LED count //#define RGBW_MODE
// set to 128*8 for 4 channel, 170*8 for 3 channel // Amount of color channels per pixel - i.e. RGB = 3, RGBW = 4
#define MAX_LEDS 170*8 #ifdef RGBW_MODE
#define PIXEL_SIZE 4
#else
#define PIXEL_SIZE 3
#endif
// LED driver chip model - depends on strip // LED driver chip model - depends on strip
#define LED_TYPE WS2812 #define LED_TYPE WS2812
// RGB pin ordering - RGB, BGR, GBR, etc // RGB pin ordering - NEO_RGB, NEO_BGR, NEO_GBR, etc
//#define RGB_ORDER GBR //#define RGB_ORDER NEO_GBR
#define RGB_ORDER GRB #define RGB_ORDER NEO_GRB
// Max number of LED strips connected // Max number of LED strips connected
// 8 for ARGB Controller PCB // 8 for ARGB Controller PCB
@ -42,10 +49,16 @@
#define ENABLE_NTP false #define ENABLE_NTP false
#define ntpserver "pool.ntp.org" // Address of NTP server. Example: pool.ntp.org #define ntpserver "pool.ntp.org" // Address of NTP server. Example: pool.ntp.org
#define TEMP_SAMPLES 32
#define AIRTEMP_PIN 28
// ethernet (w5500) or wifi (pico W cyw43) // ethernet (w5500) or wifi (pico W cyw43)
#define INT_ETHERNET #define INT_ETHERNET
//#define INT_WIFI //#define INT_WIFI
#define NO_DOUBLE_BUFFER 1
#define E131_DEFAULT_PORT 5568
#define ETH_SPI_SPD 64000000 #define ETH_SPI_SPD 64000000
// network and universe settings // network and universe settings

@ -57,7 +57,7 @@ void E131::initUnicast() {
delay(100); delay(100);
udp.begin(E131_DEFAULT_PORT); udp.begin(E131_DEFAULT_PORT);
if (Serial) { if (Serial) {
Serial.print(F("- Unicast port: ")); Serial.print(String(millis()/1000.0) + ": " + "- Unicast port: ");
Serial.println(E131_DEFAULT_PORT); Serial.println(E131_DEFAULT_PORT);
} }
} }
@ -268,24 +268,24 @@ void E131::beginMulticast(uint8_t *mac, uint16_t universe,
void E131::dumpError(e131_error_t error) { void E131::dumpError(e131_error_t error) {
switch (error) { switch (error) {
case ERROR_ACN_ID: case ERROR_ACN_ID:
Serial.print(F("INVALID PACKET ID: ")); Serial.print(String(millis()/1000.0) + ": " + "INVALID PACKET ID: ");
for (int i = 0; i < sizeof(ACN_ID); i++) for (int i = 0; i < sizeof(ACN_ID); i++)
Serial.print(pwbuff->acn_id[i], HEX); Serial.print(pwbuff->acn_id[i], HEX);
Serial.println(""); Serial.println("");
break; break;
case ERROR_PACKET_SIZE: case ERROR_PACKET_SIZE:
Serial.println(F("INVALID PACKET SIZE: ")); Serial.println(String(millis()/1000.0) + ": " + "INVALID PACKET SIZE: ");
break; break;
case ERROR_VECTOR_ROOT: case ERROR_VECTOR_ROOT:
Serial.print(F("INVALID ROOT VECTOR: 0x")); Serial.print(String(millis()/1000.0) + ": " + "INVALID ROOT VECTOR: 0x");
Serial.println(htonl(pwbuff->root_vector), HEX); Serial.println(htonl(pwbuff->root_vector), HEX);
break; break;
case ERROR_VECTOR_FRAME: case ERROR_VECTOR_FRAME:
Serial.print(F("INVALID FRAME VECTOR: 0x")); Serial.print(String(millis()/1000.0) + ": " + "INVALID FRAME VECTOR: 0x");
Serial.println(htonl(pwbuff->frame_vector), HEX); Serial.println(htonl(pwbuff->frame_vector), HEX);
break; break;
case ERROR_VECTOR_DMP: case ERROR_VECTOR_DMP:
Serial.print(F("INVALID DMP VECTOR: 0x")); Serial.print(String(millis()/1000.0) + ": " + "INVALID DMP VECTOR: 0x");
Serial.println(pwbuff->dmp_vector, HEX); Serial.println(pwbuff->dmp_vector, HEX);
} }
} }

@ -41,10 +41,6 @@
# define _UDP WiFiUDP # define _UDP WiFiUDP
//# define INT_ETHERNET //# define INT_ETHERNET
#define NO_DOUBLE_BUFFER 1
/* Defaults */
#define E131_DEFAULT_PORT 5568
#define WIFI_CONNECT_TIMEOUT 15000 /* 15 seconds */ #define WIFI_CONNECT_TIMEOUT 15000 /* 15 seconds */
/* E1.31 Packet Offsets */ /* E1.31 Packet Offsets */

@ -6,15 +6,18 @@
#include <HTTPUpdateServer.h> #include <HTTPUpdateServer.h>
#include <WebServer.h> #include <WebServer.h>
#include "e131.h" #include "e131.h"
#include <FastLED.h> //#include <Adafruit_NeoPixel.h>
#include <Adafruit_NeoPXL8.h>
//#include <FastLED.h>
//#include "FastLED_RGBW.h"
#include "config.h" #include "config.h"
#include <EEPROM.h> #include <EEPROM.h>
#include <pico/stdlib.h> #include <pico/stdlib.h>
#include <hardware/vreg.h> #include <hardware/vreg.h>
int strips[LED_STRIPS] = {170, 170, 170, 170, 170, 170, 170, 170};
// Begin code // Begin code
bool core1_separate_stack = true; //bool core1_separate_stack = true;
#ifdef DEBUG #ifdef DEBUG
#define PRINTFUNC print #define PRINTFUNC print
@ -26,8 +29,24 @@ bool core1_separate_stack = true;
int calculate[LED_STRIPS * 4]; int calculate[LED_STRIPS * 4];
int universes[LED_STRIPS * 4]; int universes[LED_STRIPS * 4];
CRGB ledstrip[MAX_LEDS];
int pins[8]; int strips[LED_STRIPS] = {MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS}; // for compatibility
int8_t pins[LED_STRIPS] = {STRIP1, STRIP2, STRIP3, STRIP4, STRIP5, STRIP6, STRIP7, STRIP8};
//const int strips[LED_STRIPS] = {170, 170, 170, 170, 170, 170, 170, 170};
//int offsets[(LED_STRIPS+1)];
Adafruit_NeoPXL8 leds(170, pins, RGB_ORDER);
// #ifdef RGBW_MODE
// // EVIL! hack to support RGBW ICs
// CRGBW leds[MAX_LEDS];
// CRGB *ledstrip = (CRGB *) &leds[0]; // yes, we just casted a 4-byte value array to a pseudo 3-byte value array
// int strips[LED_STRIPS] = {getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128)};
// #else
// int strips[LED_STRIPS] = {170, 170, 170, 170, 170, 170, 170, 170};
// CRGB ledstrip[MAX_LEDS];
// #endif
uint8_t * livedata; uint8_t * livedata;
// Networking // Networking
@ -63,15 +82,33 @@ const uint8_t WHITE[PIXEL_SIZE]= {0x20, 0x20, 0x20};
Wiznet5500lwIP eth(17, SPI, 21); //, 21); // 17 : cs, 21 : INTn Wiznet5500lwIP eth(17, SPI, 21); //, 21); // 17 : cs, 21 : INTn
E131 e131; E131 e131;
float cputemparray[TEMP_SAMPLES];
float airtemparray[TEMP_SAMPLES];
float cputemp;
float airtemp;
int datapos = 0;
#ifdef RGBW_MODE
inline void setpixelrgb(int idx, byte r, byte g, byte b, byte w) {
leds.setPixelColor(idx, r, g, b, w);
}
#else
inline void setpixelrgb(int idx, byte r, byte g, byte b) {
leds.setPixelColor(idx, r, g, b);
}
#endif
inline void showpixels() {
leds.show();
}
template <class T> T print(T in) { template <class T> T print(T in) {
Serial.print(String(in)); if(Serial)
Serial.print(String(millis()/1000.0) + ": " + String(in));
if(printer) clientbuffer += String(in); if(printer) clientbuffer += String(in);
return (T)true; return (T)true;
} }
template <class T> T println(T in) { template <class T> T println(T in) {
Serial.println(String(in)); if(Serial)
Serial.println(String(millis()/1000.0) + ": " + String(in));
if(printer) { if(printer) {
clientbuffer += String(in); clientbuffer += String(in);
clientbuffer += "\n"; clientbuffer += "\n";
@ -118,7 +155,7 @@ void handleForm() {
bool ipset = false; bool ipset = false;
bool reboot = false; bool reboot = false;
for (uint8_t i = 0; i < httpServer.args(); i++) { for (uint8_t i = 0; i < httpServer.args(); i++) {
Serial.println(httpServer.argName(i)); println(httpServer.argName(i));
if (httpServer.argName(i) == "ipa") { if (httpServer.argName(i) == "ipa") {
ipset = true; ipset = true;
} }
@ -177,9 +214,9 @@ void handleForm() {
if(reboot) { if(reboot) {
EEPROM.commit(); EEPROM.commit();
for (int i = 0; i < MAX_LEDS; i++) { for (int i = 0; i < MAX_LEDS; i++) {
ledstrip[i] = CRGB(0, 0, 0); setpixelrgb(i, 0, 0, 0);
} }
FastLED.show(); showpixels();
ready = 3; // trigger core 1 to stop ready = 3; // trigger core 1 to stop
delay(250); delay(250);
rp2040.reboot(); rp2040.reboot();
@ -209,46 +246,53 @@ void handleNotFound() {
void write_universe(long universe, uint8_t data[], long size) { void write_universe(long universe, uint8_t data[], long size) {
// universe starts at 0 // universe starts at 0
/*PRINTFUNC("Universe: "); //print("Universe: ");
PRINTLNFUNC(universe); //Serial.println(universe);
PRINTFUNC("Calculate size: "); //print("Calculate size: ");
PRINTLNFUNC(sizeof(calculate));*/ //Serial.println(sizeof(calculate));
int offset = calculate[universe]; int offset = calculate[universe];
/*PRINTFUNC("Offset: "); //print("Offset: ");
PRINTLNFUNC(offset); //Serial.println(offset);
PRINTFUNC("Universes size: "); //print("Universes size: ");
PRINTLNFUNC(sizeof(universes));*/ //Serial.println(sizeof(universes));
int write_size = universes[universe]; int write_size = universes[universe];
/*PRINTFUNC("Length: "); /*print("Length: ");
PRINTLNFUNC(write_size * PIXEL_SIZE + (CHANNEL_START - 1) + 2); Serial.println(write_size * PIXEL_SIZE + (CHANNEL_START - 1) + 2);
PRINTFUNC("Data: "); print("Data: ");
PRINTLNFUNC(size);*/ Serial.println(size);*/
if (write_size * PIXEL_SIZE + (CHANNEL_START - 1) + 2 > size) { if (write_size * PIXEL_SIZE + (CHANNEL_START - 1) > size) {
println("Write size too big!!"); println("Write size too big!!");
println(String(write_size * PIXEL_SIZE + (CHANNEL_START - 1)) + " with data size " + String(size));
return; return;
} }
if(offset + write_size > sizeof(ledstrip)) { /*if(offset + write_size > sizeof(ledstrip)) {
println("Write size too big!!"); println("Write size too big!!");
println(String(offset + write_size) + " with strip size " + sizeof(ledstrip));
return; return;
} }*/
//status = 0; //status = 0;
for (int i = 0; i < write_size; i++) { for (int i = 0; i < write_size; i++) {
int j = i * PIXEL_SIZE + (CHANNEL_START - 1); int j = i * PIXEL_SIZE + (CHANNEL_START - 1);
/*if(debug) { /*if(debug) {
PRINTFUNC(data[j]); Serial.print(data[j]);
PRINTFUNC(" "); Serial.print(" ");
PRINTFUNC(data[j+1]); Serial.print(data[j+1]);
PRINTFUNC(" "); Serial.print(" ");
PRINTFUNC(data[j+2]); Serial.print(data[j+2]);
PRINTFUNC(" "); Serial.print(" ");
}*/ }*/
ledstrip[offset + i] = CRGB(data[j], data[j+1], data[j+2]); #ifdef RGBW_MODE
setpixelrgb(offset + i, data[j], data[j+1], data[j+2]);
#else
setpixelrgb(offset + i, data[j], data[j+1], data[j+2]);
#endif
//ledstrip[strip].setPixelColor(i + offset, data[j], data[j+1], data[j+2]); //ledstrip[strip].setPixelColor(i + offset, data[j], data[j+1], data[j+2]);
} }
//FastLED.show(); //FastLED.show();
//status = 1; //status = 1;
//PRINTLNFUNC("Done writing."); //println("Done writing.");
} }
@ -257,14 +301,18 @@ void setup() {
vreg_voltage v = VREG_VOLTAGE_1_20; vreg_voltage v = VREG_VOLTAGE_1_20;
vreg_set_voltage(v); vreg_set_voltage(v);
set_sys_clock_khz(252000, false); set_sys_clock_khz(252000, false);
pinMode(23, OUTPUT);
pinMode(23, HIGH);
Serial.begin(115200); Serial.begin(115200);
rp2040.wdt_begin(8000); //rp2040.wdt_begin(8000);
pinMode(24, INPUT); // VBUS detect - check for USB connection pinMode(24, INPUT); // VBUS detect - check for USB connection
if (digitalRead(24)) { if (digitalRead(24)) {
delay(3000); // Wait for serial delay(3000); // Wait for serial
} }
pinMode(21, INPUT);
println("\r\nStarting RGB Controller..."); pinMode(21, INPUT); // interrupt for W500
Serial.println("");
println("Starting RGB Controller...");
pinMode(20, OUTPUT); pinMode(20, OUTPUT);
println("Resetting W5500 Ethernet Driver..."); println("Resetting W5500 Ethernet Driver...");
digitalWrite(20, LOW); // reset W5500 ethernet digitalWrite(20, LOW); // reset W5500 ethernet
@ -316,6 +364,7 @@ void setup() {
EEPROM.commit(); EEPROM.commit();
} }
IP_ADDR = IPAddress(EEPROM.read(0),EEPROM.read(1),EEPROM.read(2),EEPROM.read(3)); IP_ADDR = IPAddress(EEPROM.read(0),EEPROM.read(1),EEPROM.read(2),EEPROM.read(3));
//IP_ADDR = IPAddress(192,168,5,5);
if (!IP_ADDR.isSet()) if (!IP_ADDR.isSet())
ETH_MODE = "dhcp"; ETH_MODE = "dhcp";
else else
@ -325,11 +374,11 @@ void setup() {
println("Configuration loaded."); println("Configuration loaded.");
if(ETH_MODE == "staticip") { if(ETH_MODE == "staticip") {
Serial.println("Setting static IP"); println("Setting static IP...");
eth.config(IP_ADDR, INADDR_NONE); eth.config(IP_ADDR, INADDR_NONE);
} }
else { else {
Serial.println(F("Requesting Address via DHCP")); println(F("Requesting Address via DHCP..."));
} }
SPI.setRX(16); SPI.setRX(16);
SPI.setCS(17); SPI.setCS(17);
@ -343,7 +392,7 @@ void setup() {
eth.setHostname(HOSTNAME); eth.setHostname(HOSTNAME);
if (!eth.begin()) { if (!eth.begin()) {
Serial.println("No wired Ethernet hardware detected. Check pinouts, wiring."); println("No wired Ethernet hardware detected. Check pinouts, wiring.");
println("Connection failed. Retrying."); println("Connection failed. Retrying.");
rp2040.reboot(); rp2040.reboot();
} }
@ -351,14 +400,14 @@ void setup() {
while (!eth.connected() && count < 32) { while (!eth.connected() && count < 32) {
rp2040.wdt_reset(); rp2040.wdt_reset();
count++; count++;
Serial.print("."); print(".");
delay(250); delay(250);
} }
if (!eth.connected()) { if (!eth.connected()) {
println("Connection failed. Retrying."); println("Connection failed. Retrying.");
rp2040.reboot(); rp2040.reboot();
} }
Serial.print(F("\r\n- IP Address: ")); print("- IP Address: ");
Serial.println(eth.localIP()); Serial.println(eth.localIP());
@ -422,28 +471,36 @@ void setup() {
httpServer.begin(); httpServer.begin();
MDNS.addService("http", "tcp", 80); MDNS.addService("http", "tcp", 80);
print("OTA Updates enabled. Open http://"); print("OTA Updates enabled. Open http://");
print(HOSTNAME); Serial.print(HOSTNAME);
print(update_path); Serial.print(update_path);
print(" in your browser and login with username "); Serial.print(" in your browser and login with username ");
print(update_username); Serial.print(update_username);
print(" and password "); Serial.print(" and password ");
println(update_password); Serial.println(update_password);
if(ENABLE_NTP) { if(ENABLE_NTP) {
println("Starting NTP client."); println("Starting NTP client.");
NTP.begin(ntpserver); NTP.begin(ntpserver);
NTP.waitSet([]() { print("."); }, 15000); NTP.waitSet([]() { Serial.print("."); }, 15000);
time_t now = time(nullptr); time_t now = time(nullptr);
println(""); Serial.println("");
gmtime_r(&now, &timeinfo); gmtime_r(&now, &timeinfo);
print("Current time: "); print("Current time: ");
println(asctime(&timeinfo)); Serial.println(asctime(&timeinfo));
} }
ready += 1; ready += 1;
while (ready == 1) { while (ready == 1) {
delay(50); delay(50);
} }
println("Starting temperature monitoring...");
pinMode(AIRTEMP_PIN, INPUT);
for(int i = 0; i < TEMP_SAMPLES; i++) {
cputemparray[i] = analogReadTemp();
airtemparray[i] = analogRead(AIRTEMP_PIN);
}
println("Startup Complete. Listening for HTTP and e1.31 (sACN) connections..."); println("Startup Complete. Listening for HTTP and e1.31 (sACN) connections...");
initinfo += clientbuffer; initinfo += clientbuffer;
//e131.beginMulticast(ssid, passphrase, UNIVERSE); //e131.beginMulticast(ssid, passphrase, UNIVERSE);
@ -458,107 +515,98 @@ void setup1() {
digitalWrite(LED_BUILTIN, HIGH); digitalWrite(LED_BUILTIN, HIGH);
println("Initializing LED outputs and universe mappings..."); println("Initializing LED outputs and universe mappings...");
#ifdef STRIP1
pins[0] = STRIP1;
#endif
#ifdef STRIP2
pins[1] = STRIP2;
#endif
#ifdef STRIP3
pins[2] = STRIP3;
#endif
#ifdef STRIP4
pins[3] = STRIP4;
#endif
#ifdef STRIP5
pins[4] = STRIP5;
#endif
#ifdef STRIP6
pins[5] = STRIP6;
#endif
#ifdef STRIP7
pins[6] = STRIP7;
#endif
#ifdef STRIP8
pins[7] = STRIP8;
#endif
// Populate universes and offsets // Populate universes and offsets
int offsetcount = 0; int offsetcount = 0;
int currentsize = 0; int currentsize = 0;
for (int i = 0; i < LED_STRIPS; i++) { for (int i = 0; i < LED_STRIPS; i++) {
#ifdef RGBW_MODE
int tmp = strips[i] * 3 / 4;
#else
int tmp = strips[i]; int tmp = strips[i];
#endif
PRINTFUNC("Strip "); print("Strip ");
PRINTFUNC(i); Serial.print(i);
PRINTFUNC(", Pin "); Serial.print(", Pin ");
PRINTFUNC(pins[i]); Serial.print(pins[i]);
PRINTFUNC(", Light count "); Serial.print(", Light count ");
PRINTLNFUNC(tmp); Serial.println(tmp);
while(tmp > MAX_PIXELS_PER_UNIVERSE) { while(tmp > MAX_PIXELS_PER_UNIVERSE) {
universes[currentsize] = MAX_PIXELS_PER_UNIVERSE; universes[currentsize] = MAX_PIXELS_PER_UNIVERSE;
calculate[currentsize] = offsetcount; calculate[currentsize] = offsetcount;
PRINTFUNC(" Universe "); print(" Universe ");
PRINTFUNC(currentsize + START_UNIVERSE); Serial.print(currentsize + START_UNIVERSE);
PRINTFUNC(", Light count "); Serial.print(", Light count ");
PRINTFUNC(MAX_PIXELS_PER_UNIVERSE); Serial.print(MAX_PIXELS_PER_UNIVERSE);
PRINTFUNC(", Size "); Serial.print(", Size ");
PRINTLNFUNC(MAX_PIXELS_PER_UNIVERSE * PIXEL_SIZE); Serial.print(MAX_PIXELS_PER_UNIVERSE * PIXEL_SIZE);
Serial.print(", Offset ");
Serial.println(calculate[currentsize]);
offsetcount += MAX_PIXELS_PER_UNIVERSE; offsetcount += MAX_PIXELS_PER_UNIVERSE;
currentsize += 1; currentsize += 1;
tmp -= MAX_PIXELS_PER_UNIVERSE; tmp -= MAX_PIXELS_PER_UNIVERSE;
} }
universes[currentsize] = tmp; universes[currentsize] = tmp;
calculate[currentsize] = offsetcount; calculate[currentsize] = offsetcount;
PRINTFUNC(" Universe "); print(" Universe ");
PRINTFUNC(currentsize + START_UNIVERSE); Serial.print(currentsize + START_UNIVERSE);
PRINTFUNC(", Light count "); Serial.print(", Light count ");
PRINTFUNC(tmp); Serial.print(tmp);
PRINTFUNC(", Size "); Serial.print(", Size ");
PRINTLNFUNC(tmp * PIXEL_SIZE); Serial.print(tmp * PIXEL_SIZE);
Serial.print(", Offset ");
Serial.println(calculate[currentsize]);
offsetcount += tmp; offsetcount += tmp;
currentsize += 1; currentsize += 1;
} }
if (!leds.begin(true)) {
println("Failure to initialize LEDs!");
delay(1000);
//rp2040.reboot();
} else {
println("LED driver initialized.");
}
#ifdef STRIP1 leds.setLatchTime(500);
FastLED.addLeds<LED_TYPE, STRIP1, RGB_ORDER>(ledstrip, calculate[0], strips[0]);
#endif for (uint32_t color = 0x440000; color > 0; color >>= 8) {
#ifdef STRIP2 leds.fill(color);
FastLED.addLeds<LED_TYPE, STRIP2, RGB_ORDER>(ledstrip, calculate[1], strips[1]); leds.show();
#endif delay(500);
#ifdef STRIP3 }
FastLED.addLeds<LED_TYPE, STRIP3, RGB_ORDER>(ledstrip, calculate[2], strips[2]);
#endif for (int i=0; i<8; i++) {
#ifdef STRIP4 if (pins && (pins[i] < 0)) {
FastLED.addLeds<LED_TYPE, STRIP4, RGB_ORDER>(ledstrip, calculate[3], strips[3]); print("No leds on pin ");
#endif Serial.println(pins[i]);
#ifdef STRIP5 continue; // No pixels on this pin
FastLED.addLeds<LED_TYPE, STRIP5, RGB_ORDER>(ledstrip, calculate[4], strips[4]); }
#endif leds.fill(0);
#ifdef STRIP6 uint32_t color = 0x0000aa;
FastLED.addLeds<LED_TYPE, STRIP6, RGB_ORDER>(ledstrip, calculate[5], strips[5]); leds.fill(color, i * MAX_LEDS, MAX_LEDS);
#endif leds.show();
#ifdef STRIP7 delay(300);
FastLED.addLeds<LED_TYPE, STRIP7, RGB_ORDER>(ledstrip, calculate[6], strips[6]); }
#endif
#ifdef STRIP8
FastLED.addLeds<LED_TYPE, STRIP8, RGB_ORDER>(ledstrip, calculate[7], strips[7]);
#endif
for (int i = 0; i < MAX_LEDS; i++) { for (int i = 0; i < MAX_LEDS; i++) {
ledstrip[i] = CRGB(0, 0, 0); setpixelrgb(i, 0, 0, 0);
} }
FastLED.show(); showpixels();
// Test all lights // Test all lights
/*for (int i = 0; i < MAX_LEDS; i++) { #ifdef LIGHTTEST
ledstrip[i] = CRGB(0, 0, 50); for (int i = 0; i < MAX_LEDS; i++) {
FastLED.show(); setpixelrgb(i, 0, 0, 50);
//delay(1); showpixels();
ledstrip[i] = CRGB(0, 0, 0); delay(1);
setpixelrgb(i, 0, 0, 0);
} }
FastLED.show();*/ showpixels();
#endif
//delay(3000); //delay(3000);
ready += 1; ready += 1;
@ -571,9 +619,13 @@ void setup1() {
} }
void loop() { void loop() {
/* Parse a packet */ /* Parse a packet */
//println("Start loop"); //println("Start loop");
if (millis() % 100 > 50) { // reset LED
digitalWrite(LED_BUILTIN, HIGH);
}
if(channels = e131.parsePacket()) { if(channels = e131.parsePacket()) {
// Offset by start universe // Offset by start universe
@ -581,8 +633,8 @@ void loop() {
//delay(0); //delay(0);
livedata = e131.data; livedata = e131.data;
status = 1; status = 1;
delayMicroseconds(5000); delayMicroseconds(3000);
//Serial.print(eth.isLinked()); //print(eth.isLinked());
nopackets = 0; nopackets = 0;
} }
else { else {
@ -590,11 +642,8 @@ void loop() {
} }
if(nopackets > 50000) { if(nopackets > 50000) {
nopackets = 0; nopackets = 0;
println("Resetting network"); println("No packets processed recently.");
eth.end();
delay(5); delay(5);
eth.begin();
println("Reset network");
} }
//println("mid loop"); //println("mid loop");
httpServer.handleClient(); httpServer.handleClient();
@ -613,7 +662,11 @@ void loop() {
} }
void loop1() { void loop1() {
rp2040.wdt_reset(); //rp2040.wdt_reset();
if (millis() % 100 < 50) {
//status = 0;
digitalWrite(LED_BUILTIN, LOW);
}
if(BOOTSEL) { if(BOOTSEL) {
bootsel_count++; bootsel_count++;
delay(50); delay(50);
@ -622,7 +675,7 @@ void loop1() {
bootsel_count = 0; bootsel_count = 0;
} }
if(bootsel_count > 60) { // 3 seconds if(bootsel_count > 60) { // 3 seconds
Serial.print("Wiping configuration..."); print("Wiping configuration...");
digitalWrite(LED_BUILTIN, LOW); digitalWrite(LED_BUILTIN, LOW);
delay(50); delay(50);
for(int i = 0; i < 5; i++) { // blink 5 times to indicate wipe for(int i = 0; i < 5; i++) { // blink 5 times to indicate wipe
@ -642,35 +695,43 @@ void loop1() {
} }
status2 = 1; status2 = 1;
if(status == 1 && e131.universe > START_UNIVERSE - 1 && channels > 0) { if(status == 1 && e131.universe > START_UNIVERSE - 1 && channels > 0) {
write_universe(e131.universe - START_UNIVERSE, livedata, channels); write_universe(e131.universe - START_UNIVERSE - 1, livedata, channels);
FastLED.show(); showpixels();
//println("Done Writing"); //println("Done Writing");
status = 0; status = 0;
} }
status2 = 0; status2 = 0;
if (millis() % 100 > 50) { // reset LED
digitalWrite(LED_BUILTIN, HIGH);
}
else if (millis() % 100 < 50 && status == 1) {
//status = 0;
digitalWrite(LED_BUILTIN, LOW);
}
//status = 0; //status = 0;
//delay(50); //delay(50);
float cputemp = analogReadTemp(); float cputemp2 = analogReadTemp();
if (cputemp > 50.0) { float airtemp2 = analogRead(AIRTEMP_PIN);
println("ERROR: Overtemperature triggered!"); airtemp2 = airtemp2 / 1024.0 * 3300; // voltage in mV
rp2040.reboot(); airtemp2 /= 10.0; // 10.0 mv/C
} airtemp2 -= 50; // offset 500mV = 0C
float envtemp = analogRead(28);
envtemp = envtemp / 1024.0 * 3300; // voltage in mV
envtemp /= 10.0; // 10.0 mv/C
envtemp -= 50; // offset 500mV = 0C
cputemparray[datapos] = cputemp2;
airtemparray[datapos] = airtemp2;
if(datapos >= TEMP_SAMPLES - 1) {
datapos = 0;
}
else {
datapos++;
}
cputemp2 = 0;
airtemp2 = 0;
for (int i = 0; i < TEMP_SAMPLES; i++) {
if(i != datapos) {
cputemp2 += cputemparray[i];
airtemp2 += airtemparray[i];
}
}
cputemp = cputemp2 / (TEMP_SAMPLES - 1);
airtemp = airtemp2 / (TEMP_SAMPLES - 1);
// TODO: report temps somehow to dashboard // TODO: report temps somehow to dashboard
//println("CPUTEMP " + String(cputemp) + " AIRTEMP " + String(airtemp));
} }

Loading…
Cancel
Save