Compare commits

..

4 Commits

@ -13,15 +13,14 @@ platform = https://github.com/maxgerhardt/platform-raspberrypi.git
board = pico board = pico
framework = arduino framework = arduino
platform_packages = platform_packages =
framework-arduinopico@https://github.com/earlephilhower/arduino-pico.git#lw framework-arduinopico@https://github.com/earlephilhower/arduino-pico.git#master
board_build.core = earlephilhower board_build.core = earlephilhower
upload_port = /run/media/amelia/RPI-RP2/ upload_port = /run/media/amelia/RPI-RP2/
debug_tool = cmsis-dap debug_tool = cmsis-dap
upload_protocol = cmsis-dap upload_protocol = cmsis-dap
monitor_speed = 115200 monitor_speed = 115200
board_build.filesystem_size = 1m board_build.filesystem_size = 1m
board_build.f_cpu = 133000000L board_build.f_cpu = 133000000L
; build_flags = -Os lib_deps =
; board_flags = -DWIFICC=CYW43_COUNTRY_USA adafruit/Adafruit NeoPixel@^1.12.0
lib_deps = adafruit/Adafruit NeoPXL8@^1.2.6
https://github.com/FastLED/FastLED#master

@ -0,0 +1,52 @@
/* FastLED_RGBW
*
* Hack to enable SK6812 RGBW strips to work with FastLED.
*
* Original code by Jim Bumgardner (http://krazydad.com).
* Modified by David Madison (http://partsnotincluded.com).
*
*/
#ifndef FastLED_RGBW_h
#define FastLED_RGBW_h
struct CRGBW {
union {
struct {
union {
uint8_t g;
uint8_t green;
};
union {
uint8_t r;
uint8_t red;
};
union {
uint8_t b;
uint8_t blue;
};
union {
uint8_t w;
uint8_t white;
};
};
uint8_t raw[4];
};
CRGBW(){}
CRGBW(uint8_t rd, uint8_t grn, uint8_t blu, uint8_t wht){
r = rd;
g = grn;
b = blu;
w = wht;
}
inline void operator = (const CRGB c) __attribute__((always_inline)){
this->r = c.r;
this->g = c.g;
this->b = c.b;
this->white = 0;
}
};
inline uint16_t getRGBWsize(uint16_t nleds){
uint16_t nbytes = nleds * 4;
if(nbytes % 3 > 0) return nbytes / 3 + 1;
else return nbytes / 3;
}
#endif

@ -3,19 +3,26 @@
#define DEBUG #define DEBUG
// Amount of color channels per pixel - i.e. RGB = 3, RGBW = 4 #define LIGHTTEST
#define PIXEL_SIZE 3
// Total LED count PER CHANNEL
// set to 128 for 4 channel, 170 for 3 channel
#define MAX_LEDS 170
// Total LED count //#define RGBW_MODE
// set to 128*8 for 4 channel, 170*8 for 3 channel // Amount of color channels per pixel - i.e. RGB = 3, RGBW = 4
#define MAX_LEDS 170*8 #ifdef RGBW_MODE
#define PIXEL_SIZE 4
#else
#define PIXEL_SIZE 3
#endif
// LED driver chip model - depends on strip // LED driver chip model - depends on strip
#define LED_TYPE WS2812 #define LED_TYPE WS2812
// RGB pin ordering - RGB, BGR, GBR, etc // RGB pin ordering - NEO_RGB, NEO_BGR, NEO_GBR, etc
//#define RGB_ORDER GBR //#define RGB_ORDER NEO_GBR
#define RGB_ORDER GRB #define RGB_ORDER NEO_GRB
// Max number of LED strips connected // Max number of LED strips connected
// 8 for ARGB Controller PCB // 8 for ARGB Controller PCB
@ -42,10 +49,16 @@
#define ENABLE_NTP false #define ENABLE_NTP false
#define ntpserver "pool.ntp.org" // Address of NTP server. Example: pool.ntp.org #define ntpserver "pool.ntp.org" // Address of NTP server. Example: pool.ntp.org
#define TEMP_SAMPLES 32
#define AIRTEMP_PIN 28
// ethernet (w5500) or wifi (pico W cyw43) // ethernet (w5500) or wifi (pico W cyw43)
#define INT_ETHERNET #define INT_ETHERNET
//#define INT_WIFI //#define INT_WIFI
#define NO_DOUBLE_BUFFER 1
#define E131_DEFAULT_PORT 5568
#define ETH_SPI_SPD 64000000 #define ETH_SPI_SPD 64000000
// network and universe settings // network and universe settings

@ -57,7 +57,7 @@ void E131::initUnicast() {
delay(100); delay(100);
udp.begin(E131_DEFAULT_PORT); udp.begin(E131_DEFAULT_PORT);
if (Serial) { if (Serial) {
Serial.print(F("- Unicast port: ")); Serial.print(String(millis()/1000.0) + ": " + "- Unicast port: ");
Serial.println(E131_DEFAULT_PORT); Serial.println(E131_DEFAULT_PORT);
} }
} }
@ -268,24 +268,24 @@ void E131::beginMulticast(uint8_t *mac, uint16_t universe,
void E131::dumpError(e131_error_t error) { void E131::dumpError(e131_error_t error) {
switch (error) { switch (error) {
case ERROR_ACN_ID: case ERROR_ACN_ID:
Serial.print(F("INVALID PACKET ID: ")); Serial.print(String(millis()/1000.0) + ": " + "INVALID PACKET ID: ");
for (int i = 0; i < sizeof(ACN_ID); i++) for (int i = 0; i < sizeof(ACN_ID); i++)
Serial.print(pwbuff->acn_id[i], HEX); Serial.print(pwbuff->acn_id[i], HEX);
Serial.println(""); Serial.println("");
break; break;
case ERROR_PACKET_SIZE: case ERROR_PACKET_SIZE:
Serial.println(F("INVALID PACKET SIZE: ")); Serial.println(String(millis()/1000.0) + ": " + "INVALID PACKET SIZE: ");
break; break;
case ERROR_VECTOR_ROOT: case ERROR_VECTOR_ROOT:
Serial.print(F("INVALID ROOT VECTOR: 0x")); Serial.print(String(millis()/1000.0) + ": " + "INVALID ROOT VECTOR: 0x");
Serial.println(htonl(pwbuff->root_vector), HEX); Serial.println(htonl(pwbuff->root_vector), HEX);
break; break;
case ERROR_VECTOR_FRAME: case ERROR_VECTOR_FRAME:
Serial.print(F("INVALID FRAME VECTOR: 0x")); Serial.print(String(millis()/1000.0) + ": " + "INVALID FRAME VECTOR: 0x");
Serial.println(htonl(pwbuff->frame_vector), HEX); Serial.println(htonl(pwbuff->frame_vector), HEX);
break; break;
case ERROR_VECTOR_DMP: case ERROR_VECTOR_DMP:
Serial.print(F("INVALID DMP VECTOR: 0x")); Serial.print(String(millis()/1000.0) + ": " + "INVALID DMP VECTOR: 0x");
Serial.println(pwbuff->dmp_vector, HEX); Serial.println(pwbuff->dmp_vector, HEX);
} }
} }

@ -41,10 +41,6 @@
# define _UDP WiFiUDP # define _UDP WiFiUDP
//# define INT_ETHERNET //# define INT_ETHERNET
#define NO_DOUBLE_BUFFER 1
/* Defaults */
#define E131_DEFAULT_PORT 5568
#define WIFI_CONNECT_TIMEOUT 15000 /* 15 seconds */ #define WIFI_CONNECT_TIMEOUT 15000 /* 15 seconds */
/* E1.31 Packet Offsets */ /* E1.31 Packet Offsets */
@ -230,9 +226,6 @@ class E131 {
stats.packet_errors++; stats.packet_errors++;
} }
} }
else {
Serial.println("Packet size " + String(size));
}
return retval; return retval;
} }

@ -1,159 +1,737 @@
#include <Arduino.h> // Includes
//#include <WiFi.h>
//#include <WiFiServer.h>
#include <W5500lwIP.h> #include <W5500lwIP.h>
#include <LEAmDNS.h> #include <LEAmDNS.h>
#include <WebServer.h>
#include <HTTPUpdateServer.h> #include <HTTPUpdateServer.h>
#include <WebServer.h>
#include "e131.h"
//#include <Adafruit_NeoPixel.h>
#include <Adafruit_NeoPXL8.h>
//#include <FastLED.h>
//#include "FastLED_RGBW.h"
#include "config.h"
#include <EEPROM.h>
#include <pico/stdlib.h> #include <pico/stdlib.h>
#include <hardware/vreg.h> #include <hardware/vreg.h>
# include <lwip/ip_addr.h>
# include <lwip/igmp.h>
# define _UDP WiFiUDP
// Begin code // Begin code
bool core1_separate_stack = true; //bool core1_separate_stack = true;
uint8_t raw[4096]; #ifdef DEBUG
_UDP udp; #define PRINTFUNC print
int nopackets = 0; #define PRINTLNFUNC println
Wiznet5500lwIP eth(17, SPI, 21); // 17 : CS, 21 : INTn #else
// don't think the interrupt pin is actually used #define PRINTFUNC
#define PRINTLNFUNC
#endif
int calculate[LED_STRIPS * 4];
int universes[LED_STRIPS * 4];
int strips[LED_STRIPS] = {MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS, MAX_LEDS}; // for compatibility
int8_t pins[LED_STRIPS] = {STRIP1, STRIP2, STRIP3, STRIP4, STRIP5, STRIP6, STRIP7, STRIP8};
//const int strips[LED_STRIPS] = {170, 170, 170, 170, 170, 170, 170, 170};
//int offsets[(LED_STRIPS+1)];
Adafruit_NeoPXL8 leds(170, pins, RGB_ORDER);
// #ifdef RGBW_MODE
// // EVIL! hack to support RGBW ICs
// CRGBW leds[MAX_LEDS];
// CRGB *ledstrip = (CRGB *) &leds[0]; // yes, we just casted a 4-byte value array to a pseudo 3-byte value array
// int strips[LED_STRIPS] = {getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128), getRGBWsize(128)};
// #else
// int strips[LED_STRIPS] = {170, 170, 170, 170, 170, 170, 170, 170};
// CRGB ledstrip[MAX_LEDS];
// #endif
uint8_t * livedata;
// Networking
WebServer httpServer(80); WebServer httpServer(80);
HTTPUpdateServer httpUpdater; HTTPUpdateServer httpUpdater;
bool status = 0;
bool status2 = 0;
byte ready = 0;
bool newconfig = false;
struct tm timeinfo;
String clientbuffer = "";
String initinfo = "";
bool debug = 1;
bool printer = 1;
int channels = 0;
// Colors (RGB)
int bootsel_count = 0;
int nopackets = 0;
const uint8_t RED[PIXEL_SIZE]= {0x20, 0x00, 0x00};
const uint8_t ORANGE[PIXEL_SIZE]= {0x20, 0x10, 0x00};
const uint8_t YELLOW[PIXEL_SIZE]= {0x20, 0x20, 0x00};
const uint8_t GREEN[PIXEL_SIZE]= {0x00, 0x20, 0x00};
const uint8_t CYAN[PIXEL_SIZE]= {0x00, 0x20, 0x20};
const uint8_t BLUE[PIXEL_SIZE]= {0x00, 0x00, 0x20};
const uint8_t PURPLE[PIXEL_SIZE]= {0x20, 0x00, 0x20};
const uint8_t BLACK[PIXEL_SIZE]= {0x00, 0x00, 0x00};
const uint8_t WHITE[PIXEL_SIZE]= {0x20, 0x20, 0x20};
#define MAX_PIXELS_PER_UNIVERSE 512 / PIXEL_SIZE /* Number of pixels */
#define CHANNEL_START 1 /* Channel to start listening at */
Wiznet5500lwIP eth(17, SPI, 21); //, 21); // 17 : cs, 21 : INTn
E131 e131;
float cputemparray[TEMP_SAMPLES];
float airtemparray[TEMP_SAMPLES];
float cputemp;
float airtemp;
int datapos = 0;
#ifdef RGBW_MODE
inline void setpixelrgb(int idx, byte r, byte g, byte b, byte w) {
leds.setPixelColor(idx, r, g, b, w);
}
#else
inline void setpixelrgb(int idx, byte r, byte g, byte b) {
leds.setPixelColor(idx, r, g, b);
}
#endif
inline void showpixels() {
leds.show();
}
template <class T> T print(T in) {
if(Serial)
Serial.print(String(millis()/1000.0) + ": " + String(in));
if(printer) clientbuffer += String(in);
return (T)true;
}
template <class T> T println(T in) {
if(Serial)
Serial.println(String(millis()/1000.0) + ": " + String(in));
if(printer) {
clientbuffer += String(in);
clientbuffer += "\n";
}
return (T)true;
}
void wipe_eeprom() {
for(int i = 0; i < 64+16; i++) {
EEPROM.write(i, (byte)0);
}
EEPROM.commit();
}
IPAddress IP_ADDR;
unsigned short START_UNIVERSE;
char HOSTNAME[64];
String ETH_MODE;
String postForms;
void handleRoot() {
httpServer.send(200, "text/html", postForms);
}
void handlePlain() {
if (httpServer.method() != HTTP_POST) {
httpServer.send(405, "text/plain", "Method Not Allowed");
} else {
httpServer.send(200, "text/plain", "POST body was:\r\n" + httpServer.arg("plain"));
println("POST body was:\r\n" + httpServer.arg("plain"));
}
}
void handleForm() {
if (httpServer.method() != HTTP_POST) {
httpServer.send(405, "text/plain", "Method Not Allowed");
} else {
String message = "POST form was:\r\n";
bool ipset = false;
bool reboot = false;
for (uint8_t i = 0; i < httpServer.args(); i++) {
println(httpServer.argName(i));
if (httpServer.argName(i) == "ipa") {
ipset = true;
}
if (httpServer.argName(i) == "hostname") {
println("Updating hostname");
for (int j = 0; j < sizeof(HOSTNAME); j++) {
if (j < sizeof(httpServer.arg(i)))
HOSTNAME[j] = httpServer.arg(i)[j];
else
HOSTNAME[j] = '\0';
}
//HOSTNAME = httpServer.arg(i);
EEPROM.put(8, HOSTNAME);
newconfig = true;
//EEPROM.commit();
}
if (httpServer.argName(i) == "universe") {
println("Updating start universe");
START_UNIVERSE = (unsigned short)(httpServer.arg(i).toInt());
EEPROM.put(4, START_UNIVERSE);
newconfig = true;
//EEPROM.commit();
}
if (httpServer.argName(i) == "reboot") {
println("Rebooting...");
reboot = true;
}
message += " " + httpServer.argName(i) + ": " + httpServer.arg(i) + "\r\n";
}
if (ipset) {
println("Updating IP address...");
byte a, b, c, d;
for (uint8_t i = 0; i < httpServer.args(); i++) {
if (httpServer.argName(i) == "ipa")
a = byte(httpServer.arg(i).toInt());
if (httpServer.argName(i) == "ipb")
b = byte(httpServer.arg(i).toInt());
if (httpServer.argName(i) == "ipc")
c = byte(httpServer.arg(i).toInt());
if (httpServer.argName(i) == "ipd")
d = byte(httpServer.arg(i).toInt());
}
void initUnicast() { IP_ADDR = IPAddress(a,b,c,d);
delay(100); EEPROM.write(0, a);
udp.begin(5568); EEPROM.write(1, b);
if (Serial) { EEPROM.write(2, c);
Serial.print(F("- Unicast port: ")); EEPROM.write(3, d);
Serial.println(5568); newconfig = true;
} }
httpServer.sendHeader("Location", "/",true);
httpServer.send(302, "text/plain", "");
//httpServer.send(200, "text/plain", message);
println(message);
if(reboot) {
EEPROM.commit();
for (int i = 0; i < MAX_LEDS; i++) {
setpixelrgb(i, 0, 0, 0);
}
showpixels();
ready = 3; // trigger core 1 to stop
delay(250);
rp2040.reboot();
}
}
}
void handleNotFound() {
String message = "File Not Found\n\n";
message += "URI: ";
message += httpServer.uri();
message += "\nMethod: ";
message += (httpServer.method() == HTTP_GET) ? "GET" : "POST";
message += "\nArguments: ";
message += httpServer.args();
message += "\n";
for (uint8_t i = 0; i < httpServer.args(); i++) {
message += " " + httpServer.argName(i) + ": " + httpServer.arg(i) + "\n";
}
httpServer.send(404, "text/plain", message);
println(message);
} }
int readPacket() {
int size = udp.parsePacket();
if (size) {
udp.readBytes(raw, size);
void write_universe(long universe, uint8_t data[], long size) {
// universe starts at 0
//print("Universe: ");
//Serial.println(universe);
//print("Calculate size: ");
//Serial.println(sizeof(calculate));
int offset = calculate[universe];
//print("Offset: ");
//Serial.println(offset);
//print("Universes size: ");
//Serial.println(sizeof(universes));
int write_size = universes[universe];
/*print("Length: ");
Serial.println(write_size * PIXEL_SIZE + (CHANNEL_START - 1) + 2);
print("Data: ");
Serial.println(size);*/
if (write_size * PIXEL_SIZE + (CHANNEL_START - 1) > size) {
println("Write size too big!!");
println(String(write_size * PIXEL_SIZE + (CHANNEL_START - 1)) + " with data size " + String(size));
return;
} }
/*else { /*if(offset + write_size > sizeof(ledstrip)) {
Serial.println("Error: packet size " + String(size)); println("Write size too big!!");
println(String(offset + write_size) + " with strip size " + sizeof(ledstrip));
return;
}*/ }*/
return size; //status = 0;
for (int i = 0; i < write_size; i++) {
int j = i * PIXEL_SIZE + (CHANNEL_START - 1);
/*if(debug) {
Serial.print(data[j]);
Serial.print(" ");
Serial.print(data[j+1]);
Serial.print(" ");
Serial.print(data[j+2]);
Serial.print(" ");
}*/
#ifdef RGBW_MODE
setpixelrgb(offset + i, data[j], data[j+1], data[j+2]);
#else
setpixelrgb(offset + i, data[j], data[j+1], data[j+2]);
#endif
//ledstrip[strip].setPixelColor(i + offset, data[j], data[j+1], data[j+2]);
}
//FastLED.show();
//status = 1;
//println("Done writing.");
} }
void setup() { void setup() {
//vreg_voltage v = VREG_VOLTAGE_1_20; vreg_voltage v = VREG_VOLTAGE_1_20;
//vreg_set_voltage(v); vreg_set_voltage(v);
//set_sys_clock_khz(252000, false); // play with this value set_sys_clock_khz(252000, false);
pinMode(23, OUTPUT);
pinMode(23, HIGH);
Serial.begin(115200); Serial.begin(115200);
//rp2040.wdt_begin(8000); //rp2040.wdt_begin(8000);
pinMode(24, INPUT); // VBUS detect - check for USB connection pinMode(24, INPUT); // VBUS detect - check for USB connection
if (digitalRead(24)) { if (digitalRead(24)) {
delay(3000); // Wait for USB serial if connected delay(3000); // Wait for serial
} }
Serial.println("\r\nStarting RGB Controller...");
pinMode(21, INPUT); // interrupt for W500
pinMode(21, INPUT); // interrupt pin - probably unused Serial.println("");
println("Starting RGB Controller...");
pinMode(20, OUTPUT); // W5500 RSTn wired to 20 pinMode(20, OUTPUT);
Serial.println("Resetting W5500 Ethernet Driver..."); println("Resetting W5500 Ethernet Driver...");
digitalWrite(20, LOW); // reset W5500 ethernet digitalWrite(20, LOW); // reset W5500 ethernet
delay(1); // for 1 ms delay(1); // for 1 ms
digitalWrite(20, HIGH); digitalWrite(20, HIGH);
SPI.setRX(16); SPI.setRX(16);
SPI.setCS(17); SPI.setCS(17);
SPI.setSCK(18); SPI.setSCK(18);
SPI.setTX(19); SPI.setTX(19);
eth.setSPISpeed(10000000); // play with this value pinMode(ENABLEPIN, OUTPUT);
lwipPollingPeriod(3); // play with this value println("Enabling outputs...");
eth.setHostname("RGBController"); digitalWrite(ENABLEPIN, LOW); // Enable buffer output!
//pinMode(0, OUTPUT);
//digitalWrite(0, HIGH);
//delay(3000);
println("Checking for EEPROM configuration...");
EEPROM.begin(256);
//wipe_eeprom();
EEPROM.get(4, START_UNIVERSE);
if (START_UNIVERSE == 0 || START_UNIVERSE == 65535) {
println("No valid config detected. Setting defaults...");
START_UNIVERSE = 1;
EEPROM.put(4, START_UNIVERSE);
EEPROM.commit();
}
Serial.println(F("Setting IP")); if(EEPROM.read(8) == byte(0)) { // check if EEPROM is empty
char newhostname[] = "RGBController";
for (int j = 0; j < sizeof(HOSTNAME); j++) {
if (j < sizeof(newhostname))
HOSTNAME[j] = newhostname[j];
else
HOSTNAME[j] = '\0';
}
EEPROM.put(8, HOSTNAME);
EEPROM.commit();
}
EEPROM.get(8, HOSTNAME);
if (HOSTNAME == "") {
char newhostname[] = "RGBController";
for (int j = 0; j < sizeof(HOSTNAME); j++) {
if (j < sizeof(newhostname))
HOSTNAME[j] = newhostname[j];
else
HOSTNAME[j] = '\0';
}
EEPROM.put(8, HOSTNAME);
EEPROM.commit();
}
IP_ADDR = IPAddress(EEPROM.read(0),EEPROM.read(1),EEPROM.read(2),EEPROM.read(3));
//IP_ADDR = IPAddress(192,168,5,5);
if (!IP_ADDR.isSet())
ETH_MODE = "dhcp";
else
ETH_MODE = "staticip";
rp2040.wdt_reset();
//eth.config(IPAddress(192,168,68,130), INADDR_NONE); // static IP; comment out for DHCP println("Configuration loaded.");
if(ETH_MODE == "staticip") {
println("Setting static IP...");
eth.config(IP_ADDR, INADDR_NONE);
}
else {
println(F("Requesting Address via DHCP..."));
}
SPI.setRX(16);
SPI.setCS(17);
SPI.setSCK(18);
SPI.setTX(19);
eth.setSPISpeed(ETH_SPI_SPD);
lwipPollingPeriod(1);
//char * hostname_char;
//HOSTNAME.toCharArray(hostname_char, 32);
eth.setHostname(HOSTNAME);
if (!eth.begin()) { if (!eth.begin()) {
Serial.println("No wired Ethernet hardware detected. Check pinouts, wiring."); println("No wired Ethernet hardware detected. Check pinouts, wiring.");
Serial.println("Connection failed. Retrying."); println("Connection failed. Retrying.");
rp2040.reboot(); rp2040.reboot();
} }
int count = 0; int count = 0;
while (!eth.connected() && count < 32) { // wait 8 seconds for connection while (!eth.connected() && count < 32) {
rp2040.wdt_reset(); rp2040.wdt_reset();
count++; count++;
Serial.print("."); print(".");
delay(250); delay(250);
} }
if (!eth.connected()) { if (!eth.connected()) {
Serial.println("Connection failed. Retrying."); println("Connection failed. Retrying.");
rp2040.reboot(); rp2040.reboot();
} }
Serial.print(F("\r\n- IP Address: ")); print("- IP Address: ");
Serial.println(eth.localIP()); Serial.println(eth.localIP());
initUnicast();
MDNS.begin("RGBController");
httpUpdater.setup(&httpServer, "/update", "admin", "admin"); e131.begin(E131_UNICAST);
#ifdef INT_WIFI
WiFi.noLowPowerMode();
#endif
// If we get here, then network is good to go
println("Starting mDNS client...");
MDNS.begin(HOSTNAME);
println("Starting web configurator & firmware update service...");
httpUpdater.setup(&httpServer, update_path, update_username, update_password);
httpServer.on("/", handleRoot);
httpServer.on("/postplain/", handlePlain);
postForms = "<html>\
<head>\
<title>RGB Controller Configuration</title>\
<style>\
body { background-color: #cccccc; font-family: Arial, Helvetica, Sans-Serif; Color: #000088; }\
</style>\
</head>\
<body>\
<h1>RGB Controller Configuration</h1><br>\
<h2>Set IP address</h2>\
Needs reboot to apply<br>\
Set to 0.0.0.0 for DHCP\
<form method=\"post\" enctype=\"application/x-www-form-urlencoded\" action=\"/postform/\">\
<input type=\"text\" name=\"ipa\" value=\"0\" size=\"3\">.\
<input type=\"text\" name=\"ipb\" value=\"0\" size=\"3\">.\
<input type=\"text\" name=\"ipc\" value=\"0\" size=\"3\">.\
<input type=\"text\" name=\"ipd\" value=\"0\" size=\"3\">\
<input type=\"submit\" value=\"Set\">\
</form><br>\
<h2>Set Hostname</h2>\
Needs reboot to apply<br>\
Max 64 characters\
<form method=\"post\" enctype=\"application/x-www-form-urlencoded\" action=\"/postform/\">\
<input type=\"text\" name=\"hostname\" value=\"" + String(HOSTNAME) + "\" size=\"20\">\
<input type=\"submit\" value=\"Set\">\
</form><br>\
<h2>DMX512 Start Universe</h2>\
Applies immediately<br>\
Between (inclusive) 1-65000\
<form method=\"post\" enctype=\"application/x-www-form-urlencoded\" action=\"/postform/\">\
<input type=\"text\" name=\"universe\" value=\"" + String(START_UNIVERSE) + "\" size=\"5\">\
<input type=\"submit\" value=\"Set\">\
</form><br>\
<form method=\"post\" enctype=\"application/x-www-form-urlencoded\" action=\"/postform/\">\
<input type=\"submit\" name=\"reboot\" value=\"Reboot\">\
</form><br>\
</body>\
</html>";
httpServer.on("/postform/", handleForm);
httpServer.onNotFound(handleNotFound);
httpServer.begin(); httpServer.begin();
MDNS.addService("http", "tcp", 80); MDNS.addService("http", "tcp", 80);
print("OTA Updates enabled. Open http://");
Serial.print(HOSTNAME);
Serial.print(update_path);
Serial.print(" in your browser and login with username ");
Serial.print(update_username);
Serial.print(" and password ");
Serial.println(update_password);
if(ENABLE_NTP) {
println("Starting NTP client.");
NTP.begin(ntpserver);
NTP.waitSet([]() { Serial.print("."); }, 15000);
time_t now = time(nullptr);
Serial.println("");
gmtime_r(&now, &timeinfo);
print("Current time: ");
Serial.println(asctime(&timeinfo));
}
ready += 1;
while (ready == 1) {
delay(50);
}
println("Starting temperature monitoring...");
pinMode(AIRTEMP_PIN, INPUT);
for(int i = 0; i < TEMP_SAMPLES; i++) {
cputemparray[i] = analogReadTemp();
airtemparray[i] = analogRead(AIRTEMP_PIN);
}
println("Startup Complete. Listening for HTTP and e1.31 (sACN) connections...");
initinfo += clientbuffer;
//e131.beginMulticast(ssid, passphrase, UNIVERSE);
printer = 0;
}
void setup1() {
while(ready == 0)
delay(50);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(32+1, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
println("Initializing LED outputs and universe mappings...");
// Populate universes and offsets
int offsetcount = 0;
int currentsize = 0;
for (int i = 0; i < LED_STRIPS; i++) {
#ifdef RGBW_MODE
int tmp = strips[i] * 3 / 4;
#else
int tmp = strips[i];
#endif
print("Strip ");
Serial.print(i);
Serial.print(", Pin ");
Serial.print(pins[i]);
Serial.print(", Light count ");
Serial.println(tmp);
while(tmp > MAX_PIXELS_PER_UNIVERSE) {
universes[currentsize] = MAX_PIXELS_PER_UNIVERSE;
calculate[currentsize] = offsetcount;
print(" Universe ");
Serial.print(currentsize + START_UNIVERSE);
Serial.print(", Light count ");
Serial.print(MAX_PIXELS_PER_UNIVERSE);
Serial.print(", Size ");
Serial.print(MAX_PIXELS_PER_UNIVERSE * PIXEL_SIZE);
Serial.print(", Offset ");
Serial.println(calculate[currentsize]);
offsetcount += MAX_PIXELS_PER_UNIVERSE;
currentsize += 1;
tmp -= MAX_PIXELS_PER_UNIVERSE;
}
universes[currentsize] = tmp;
calculate[currentsize] = offsetcount;
print(" Universe ");
Serial.print(currentsize + START_UNIVERSE);
Serial.print(", Light count ");
Serial.print(tmp);
Serial.print(", Size ");
Serial.print(tmp * PIXEL_SIZE);
Serial.print(", Offset ");
Serial.println(calculate[currentsize]);
offsetcount += tmp;
currentsize += 1;
}
if (!leds.begin(true)) {
println("Failure to initialize LEDs!");
delay(1000);
//rp2040.reboot();
} else {
println("LED driver initialized.");
}
leds.setLatchTime(500);
for (uint32_t color = 0x440000; color > 0; color >>= 8) {
leds.fill(color);
leds.show();
delay(500);
}
for (int i=0; i<8; i++) {
if (pins && (pins[i] < 0)) {
print("No leds on pin ");
Serial.println(pins[i]);
continue; // No pixels on this pin
}
leds.fill(0);
uint32_t color = 0x0000aa;
leds.fill(color, i * MAX_LEDS, MAX_LEDS);
leds.show();
delay(300);
}
#ifdef INT_WIFI
WiFi.noLowPowerMode(); for (int i = 0; i < MAX_LEDS; i++) {
setpixelrgb(i, 0, 0, 0);
}
showpixels();
// Test all lights
#ifdef LIGHTTEST
for (int i = 0; i < MAX_LEDS; i++) {
setpixelrgb(i, 0, 0, 50);
showpixels();
delay(1);
setpixelrgb(i, 0, 0, 0);
}
showpixels();
#endif #endif
//delay(3000);
ready += 1;
while (ready == 1) {
delay(50);
}
//rp2040.wdt_begin(8000);
Serial.println("Startup Complete. Listening for e1.31 (sACN) connections...");
} }
void setup1() {
pinMode(LED_BUILTIN, OUTPUT);
//pinMode(32+1, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
}
void loop() { void loop() {
/* Parse a packet */ /* Parse a packet */
//println("Start loop"); //println("Start loop");
int size; if (millis() % 100 > 50) { // reset LED
if(size = readPacket()) { digitalWrite(LED_BUILTIN, HIGH);
}
if(channels = e131.parsePacket()) {
// Offset by start universe // Offset by start universe
// as all local functions count from 0 // as all local functions count from 0
//delay(0); //delay(0);
Serial.println("Got valid packet of size " + String(size) + " at " + String(millis()/1000.0)); livedata = e131.data;
//delayMicroseconds(1000); status = 1;
delayMicroseconds(3000);
//print(eth.isLinked());
nopackets = 0; nopackets = 0;
} }
else { else {
//delayMicroseconds(500);
nopackets++; nopackets++;
} }
if(nopackets > 50000) { if(nopackets > 50000) {
nopackets = 0; nopackets = 0;
println("No packets processed recently.");
delay(5); delay(5);
Serial.println("No packets recieved in a while.... at " + String(millis()/1000.0));
} }
//println("mid loop");
MDNS.update();
httpServer.handleClient(); httpServer.handleClient();
MDNS.update();
//println("end loop");
if(newconfig == true) {
println("Waiting for core 1 to idle...");
ready = 3;
while(ready == 3)
delay(50);
println("Configuration changed - saving to flash...");
EEPROM.commit();
newconfig = false;
ready = 2;
}
} }
void loop1() { void loop1() {
digitalWrite(LED_BUILTIN, HIGH); //rp2040.wdt_reset();
delay(50); if (millis() % 100 < 50) {
digitalWrite(LED_BUILTIN, LOW); //status = 0;
delay(50); digitalWrite(LED_BUILTIN, LOW);
}
if(BOOTSEL) {
bootsel_count++;
delay(50);
}
else {
bootsel_count = 0;
}
if(bootsel_count > 60) { // 3 seconds
print("Wiping configuration...");
digitalWrite(LED_BUILTIN, LOW);
delay(50);
for(int i = 0; i < 5; i++) { // blink 5 times to indicate wipe
digitalWrite(LED_BUILTIN, HIGH);
delay(125);
digitalWrite(LED_BUILTIN, LOW);
delay(125);
}
wipe_eeprom();
rp2040.reboot();
}
if(ready == 3) {
ready = 4;
while(ready == 4)
delay(50);
}
status2 = 1;
if(status == 1 && e131.universe > START_UNIVERSE - 1 && channels > 0) {
write_universe(e131.universe - START_UNIVERSE - 1, livedata, channels);
showpixels();
//println("Done Writing");
status = 0;
}
status2 = 0;
//status = 0;
//delay(50);
float cputemp2 = analogReadTemp();
float airtemp2 = analogRead(AIRTEMP_PIN);
airtemp2 = airtemp2 / 1024.0 * 3300; // voltage in mV
airtemp2 /= 10.0; // 10.0 mv/C
airtemp2 -= 50; // offset 500mV = 0C
cputemparray[datapos] = cputemp2;
airtemparray[datapos] = airtemp2;
if(datapos >= TEMP_SAMPLES - 1) {
datapos = 0;
}
else {
datapos++;
}
cputemp2 = 0;
airtemp2 = 0;
for (int i = 0; i < TEMP_SAMPLES; i++) {
if(i != datapos) {
cputemp2 += cputemparray[i];
airtemp2 += airtemparray[i];
}
}
cputemp = cputemp2 / (TEMP_SAMPLES - 1);
airtemp = airtemp2 / (TEMP_SAMPLES - 1);
// TODO: report temps somehow to dashboard
//println("CPUTEMP " + String(cputemp) + " AIRTEMP " + String(airtemp));
} }

Loading…
Cancel
Save