|
|
|
#!python
|
|
|
|
#
|
|
|
|
# 2021 Zhengyu Peng
|
|
|
|
# Website: https://zpeng.me
|
|
|
|
#
|
|
|
|
# ` `
|
|
|
|
# -:. -#:
|
|
|
|
# -//:. -###:
|
|
|
|
# -////:. -#####:
|
|
|
|
# -/:.://:. -###++##:
|
|
|
|
# .. `://:- -###+. :##:
|
|
|
|
# `:/+####+. :##:
|
|
|
|
# .::::::::/+###. :##:
|
|
|
|
# .////-----+##: `:###:
|
|
|
|
# `-//:. :##: `:###/.
|
|
|
|
# `-//:. :##:`:###/.
|
|
|
|
# `-//:+######/.
|
|
|
|
# `-/+####/.
|
|
|
|
# `+##+.
|
|
|
|
# :##:
|
|
|
|
# :##:
|
|
|
|
# :##:
|
|
|
|
# :##:
|
|
|
|
# :##:
|
|
|
|
# .+:
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def semicircle_generator(radius, steps, reverse=False):
|
|
|
|
assert (steps % 4) == 0
|
|
|
|
halfsteps = int(steps/2)
|
|
|
|
|
|
|
|
step_angle = np.pi / halfsteps
|
|
|
|
|
|
|
|
result = np.zeros((steps, 3))
|
|
|
|
halfsteps_array = np.arange(halfsteps)
|
|
|
|
|
|
|
|
# first half, move backward (only y change)
|
|
|
|
result[:halfsteps, 1] = radius - halfsteps_array*radius*2/(halfsteps)
|
|
|
|
|
|
|
|
# second half, move forward in semicircle shape (y, z change)
|
|
|
|
angle = np.pi - step_angle*halfsteps_array
|
|
|
|
result[halfsteps:, 1] = radius * np.cos(angle)
|
|
|
|
result[halfsteps:, 2] = radius * np.sin(angle)
|
|
|
|
|
|
|
|
result = np.roll(result, int(steps/4), axis=0)
|
|
|
|
|
|
|
|
if reverse:
|
|
|
|
result = np.flip(result, axis=0)
|
|
|
|
result = np.roll(result, 1, axis=0)
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def semicircle2_generator(steps, y_radius, z_radius, x_radius, reverse=False):
|
|
|
|
assert (steps % 4) == 0
|
|
|
|
halfsteps = int(steps/2)
|
|
|
|
|
|
|
|
step_angle = np.pi / halfsteps
|
|
|
|
|
|
|
|
result = np.zeros((steps, 3))
|
|
|
|
halfsteps_array = np.arange(halfsteps)
|
|
|
|
|
|
|
|
# first half, move backward (only y change)
|
|
|
|
result[:halfsteps, 1] = y_radius - halfsteps_array*y_radius*2/(halfsteps)
|
|
|
|
|
|
|
|
# second half, move forward in semicircle shape (x, y, z change)
|
|
|
|
angle = np.pi - step_angle*halfsteps_array
|
|
|
|
result[halfsteps:, 0] = x_radius * np.sin(angle)
|
|
|
|
result[halfsteps:, 1] = y_radius * np.cos(angle)
|
|
|
|
result[halfsteps:, 2] = z_radius * np.sin(angle)
|
|
|
|
|
|
|
|
result = np.roll(result, int(steps/4), axis=0)
|
|
|
|
|
|
|
|
if reverse:
|
|
|
|
result = np.flip(result, axis=0)
|
|
|
|
result = np.roll(result, 1, axis=0)
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def get_rotate_x_matrix(angle):
|
|
|
|
angle = angle * np.pi / 180
|
|
|
|
return np.matrix([
|
|
|
|
[1, 0, 0, 0],
|
|
|
|
[0, np.cos(angle), -np.sin(angle), 0],
|
|
|
|
[0, np.sin(angle), np.cos(angle), 0],
|
|
|
|
[0, 0, 0, 1],
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def get_rotate_y_matrix(angle):
|
|
|
|
angle = angle * np.pi / 180
|
|
|
|
return np.matrix([
|
|
|
|
[np.cos(angle), 0, np.sin(angle), 0],
|
|
|
|
[0, 1, 0, 0],
|
|
|
|
[-np.sin(angle), 0, np.cos(angle), 0],
|
|
|
|
[0, 0, 0, 1],
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def get_rotate_z_matrix(angle):
|
|
|
|
angle = angle * np.pi / 180
|
|
|
|
return np.matrix([
|
|
|
|
[np.cos(angle), -np.sin(angle), 0, 0],
|
|
|
|
[np.sin(angle), np.cos(angle), 0, 0],
|
|
|
|
[0, 0, 1, 0],
|
|
|
|
[0, 0, 0, 1],
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def matrix_mul(m, pt):
|
|
|
|
ptx = list(pt) + [1]
|
|
|
|
return list((m * np.matrix(ptx).T).T.flat)[:-1]
|
|
|
|
|
|
|
|
|
|
|
|
def path_rotate_x(path, angle):
|
|
|
|
ptx = np.append(path, np.ones((np.shape(path)[0], 1)), axis=1)
|
|
|
|
return ((get_rotate_x_matrix(angle) * np.matrix(ptx).T).T)[:, :-1]
|
|
|
|
|
|
|
|
|
|
|
|
def path_rotate_y(path, angle):
|
|
|
|
ptx = np.append(path, np.ones((np.shape(path)[0], 1)), axis=1)
|
|
|
|
return ((get_rotate_y_matrix(angle) * np.matrix(ptx).T).T)[:, :-1]
|
|
|
|
|
|
|
|
|
|
|
|
def path_rotate_z(path, angle):
|
|
|
|
ptx = np.append(path, np.ones((np.shape(path)[0], 1)), axis=1)
|
|
|
|
return ((get_rotate_z_matrix(angle) * np.matrix(ptx).T).T)[:, :-1]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
pt = [0, 1, 0]
|