format code
This commit is contained in:
parent
57abd697ba
commit
0e00ba7fca
448
main.py
448
main.py
@ -13,75 +13,81 @@ itemh = 0
|
||||
|
||||
|
||||
def midpoint(ptA, ptB):
|
||||
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
||||
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
||||
|
||||
|
||||
def sizeVexScrew(iteml):
|
||||
# Screw Sizing code
|
||||
# subtract screw head size to find thread length
|
||||
shead = 0.1
|
||||
iteml -= shead
|
||||
#print("Thread Length: " + str(iteml))
|
||||
iteml *= 8
|
||||
iteml = round(iteml)
|
||||
iteml /= 8
|
||||
return iteml
|
||||
# Screw Sizing code
|
||||
# subtract screw head size to find thread length
|
||||
shead = 0.1
|
||||
iteml -= shead
|
||||
#print("Thread Length: " + str(iteml))
|
||||
iteml *= 8
|
||||
iteml = round(iteml)
|
||||
iteml /= 8
|
||||
return iteml
|
||||
|
||||
|
||||
def sizeStandoff(iteml):
|
||||
# Standoff Sizing code
|
||||
iteml *= 2
|
||||
iteml = round(iteml)
|
||||
iteml /= 2
|
||||
return iteml
|
||||
# Standoff Sizing code
|
||||
iteml *= 2
|
||||
iteml = round(iteml)
|
||||
iteml /= 2
|
||||
return iteml
|
||||
|
||||
|
||||
def larger(a, b):
|
||||
if a >= b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
if a >= b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
|
||||
|
||||
def smaller(a, b):
|
||||
if a < b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
if a < b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
|
||||
|
||||
def near(a, b, close):
|
||||
if abs(a-b) < close:
|
||||
return True
|
||||
return False
|
||||
if abs(a-b) < close:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def swap(a, b):
|
||||
tmp = a
|
||||
a = b
|
||||
b = tmp
|
||||
tmp = a
|
||||
a = b
|
||||
b = tmp
|
||||
|
||||
|
||||
# construct the argument parse and parse the arguments
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-i", "--image", required=True,
|
||||
help="path to the input image")
|
||||
help="path to the input image")
|
||||
ap.add_argument("-w", "--width", type=float, required=True,
|
||||
help="width of the left-most object in the image (in inches)")
|
||||
help="width of the left-most object in the image (in inches)")
|
||||
ap.add_argument("-n", "--number", type=int, required=False,
|
||||
help="object # to measure (from left to right)")
|
||||
help="object # to measure (from left to right)")
|
||||
ap.add_argument("-s", "--show", action="store_true",
|
||||
help="show on the screen")
|
||||
help="show on the screen")
|
||||
args = vars(ap.parse_args())
|
||||
args2 = ap.parse_args()
|
||||
selected = 2
|
||||
if type(args["number"]) == type(selected):
|
||||
selected = args["number"]
|
||||
selected = args["number"]
|
||||
|
||||
# load the image, convert it to grayscale, and blur it slightly
|
||||
image = cv2.imread(args["image"])
|
||||
#image = cv2.resize(image, (int(image.shape[1]*1), int(image.shape[0]*1)))
|
||||
image = cv2.resize(image, (1000, int(image.shape[0]/image.shape[1] * 1000)), interpolation = cv2.INTER_NEAREST)
|
||||
image = cv2.resize(image, (1000, int(
|
||||
image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
if args2.show:
|
||||
cv2.namedWindow("Item Sorter")
|
||||
cv2.imshow("Item Sorter", image)
|
||||
cv2.waitKey(0)
|
||||
cv2.namedWindow("Item Sorter")
|
||||
cv2.imshow("Item Sorter", image)
|
||||
cv2.waitKey(0)
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
||||
|
||||
@ -93,11 +99,11 @@ edged = cv2.dilate(edged, None, iterations=1)
|
||||
#edged = cv2.erode(edged, None, iterations=1)
|
||||
|
||||
if args2.show:
|
||||
cv2.imshow("Item Sorter", edged)
|
||||
cv2.waitKey(0)
|
||||
cv2.imshow("Item Sorter", edged)
|
||||
cv2.waitKey(0)
|
||||
# find contours in the edge map
|
||||
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# sort the contours from left-to-right and initialize the
|
||||
@ -107,205 +113,205 @@ pixelsPerMetric = None
|
||||
num = 0
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Calibration loop
|
||||
for c in cnts:
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
orig = image.copy()
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
#box = perspective.order_points(box)
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0)))
|
||||
area_box = dA * dB
|
||||
(x,y),radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig,(int(x),int(y)),int(radius),(0,255,0),2)
|
||||
mask = np.zeros(gray.shape,np.uint8)
|
||||
cv2.drawContours(mask,[c],0,255,-1)
|
||||
#pixelpoints = np.transpose(np.nonzero(mask))
|
||||
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
||||
mean_val = cv2.mean(hsv,mask = mask)
|
||||
print(str(mean_val[0]))
|
||||
#print(", " + str(mean_val[0]/mean_val[2]))
|
||||
#print(", " + str(mean_val[2]/mean_val[1]))
|
||||
if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
|
||||
# and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
|
||||
pixelsPerMetric = smaller(dA, dB) / args["width"]
|
||||
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
orig = image.copy()
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
#box = perspective.order_points(box)
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
||||
np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
||||
np.array((trbrX, trbrY, 0)))
|
||||
area_box = dA * dB
|
||||
(x, y), radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 2)
|
||||
mask = np.zeros(gray.shape, np.uint8)
|
||||
cv2.drawContours(mask, [c], 0, 255, -1)
|
||||
#pixelpoints = np.transpose(np.nonzero(mask))
|
||||
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
||||
mean_val = cv2.mean(hsv, mask=mask)
|
||||
print(str(mean_val[0]))
|
||||
#print(", " + str(mean_val[0]/mean_val[2]))
|
||||
#print(", " + str(mean_val[2]/mean_val[1]))
|
||||
if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
|
||||
# and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
|
||||
pixelsPerMetric = smaller(dA, dB) / args["width"]
|
||||
|
||||
|
||||
orig = image.copy()
|
||||
# loop over the contours individually
|
||||
for c in cnts:
|
||||
#orig = image.copy()
|
||||
num += 1
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100 or pixelsPerMetric is None:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
#orig = image.copy()
|
||||
num += 1
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100 or pixelsPerMetric is None:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
# order the points in the contour such that they appear
|
||||
# in top-left, top-right, bottom-right, and bottom-left
|
||||
# order, then draw the outline of the rotated bounding
|
||||
# box
|
||||
#box = perspective.order_points(box)
|
||||
|
||||
# order the points in the contour such that they appear
|
||||
# in top-left, top-right, bottom-right, and bottom-left
|
||||
# order, then draw the outline of the rotated bounding
|
||||
# box
|
||||
#box = perspective.order_points(box)
|
||||
# loop over the original points and draw them
|
||||
# for (x, y) in box:
|
||||
#cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
|
||||
|
||||
# loop over the original points and draw them
|
||||
#for (x, y) in box:
|
||||
#cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
|
||||
# unpack the ordered bounding box, then compute the midpoint
|
||||
# between the top-left and top-right coordinates, followed by
|
||||
# the midpoint between bottom-left and bottom-right coordinates
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
|
||||
# unpack the ordered bounding box, then compute the midpoint
|
||||
# between the top-left and top-right coordinates, followed by
|
||||
# the midpoint between bottom-left and bottom-right coordinates
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
# compute the midpoint between the top-left and top-right points,
|
||||
# followed by the midpoint between the top-right and bottom-right
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
# draw the midpoints on the image
|
||||
#cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
||||
|
||||
# compute the midpoint between the top-left and top-right points,
|
||||
# followed by the midpoint between the top-right and bottom-right
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
# draw the midpoints on the image
|
||||
#cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
||||
# draw lines between the midpoints
|
||||
# compute the Euclidean distance between the midpoints
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
||||
np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
||||
np.array((trbrX, trbrY, 0)))
|
||||
|
||||
# draw lines between the midpoints
|
||||
# compute the Euclidean distance between the midpoints
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0)))
|
||||
dimA = dA / pixelsPerMetric
|
||||
dimB = dB / pixelsPerMetric
|
||||
|
||||
if num == selected or args2.show:
|
||||
area_box = dA * dB
|
||||
(x, y), radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 1)
|
||||
|
||||
dimA = dA / pixelsPerMetric
|
||||
dimB = dB / pixelsPerMetric
|
||||
objtype = "Unknown"
|
||||
itemw = larger(dimA, dimB)
|
||||
itemwr = itemw
|
||||
itemwr *= 8
|
||||
itemwr = round(itemwr)
|
||||
itemwr /= 8
|
||||
|
||||
if num == selected or args2.show:
|
||||
area_box = dA * dB
|
||||
(x,y),radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig,(int(x),int(y)),int(radius),(0,255,0),1)
|
||||
itemh = smaller(dimA, dimB)
|
||||
itemhr = itemh
|
||||
itemhr *= 16
|
||||
itemhr = round(itemhr)
|
||||
itemhr /= 16
|
||||
if circular and itemwr == 0.75:
|
||||
objtype = "Penny"
|
||||
iteml = 0
|
||||
else:
|
||||
epsilon = 3 # 0.02*cv2.arcLength(c,True)
|
||||
# print(str(epsilon))
|
||||
approx = cv2.approxPolyDP(c, epsilon, True)
|
||||
hull = cv2.convexHull(approx, returnPoints=False)
|
||||
hull2 = cv2.convexHull(c)
|
||||
defects = cv2.convexityDefects(c, hull)
|
||||
#print(str(defects.size) + " match")
|
||||
cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
|
||||
cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
|
||||
convexness = area_contour / cv2.contourArea(hull2)
|
||||
#print(str(convexness) + " % fill")
|
||||
# if not cv2.isContourConvex(approx):
|
||||
# if cv2.matchShapes(hull, c, 1, 0.0) > 1:
|
||||
if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75):
|
||||
objtype = "Screw"
|
||||
iteml = larger(dimA, dimB)
|
||||
#print("Screw Length (RAW): " + str(iteml))
|
||||
iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
|
||||
#print("Rounded Length: " + str(iteml))
|
||||
else:
|
||||
if itemhr == 0.3125:
|
||||
objtype = "Standoff"
|
||||
iteml = sizeStandoff(itemw)
|
||||
|
||||
if itemhr == 0.1875:
|
||||
objtype = "Axle"
|
||||
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
|
||||
|
||||
objtype = "Unknown"
|
||||
itemw = larger(dimA, dimB)
|
||||
itemwr = itemw
|
||||
itemwr *= 8
|
||||
itemwr = round(itemwr)
|
||||
itemwr /= 8
|
||||
rows, cols = orig.shape[:2]
|
||||
[vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
|
||||
lefty = int((-xx*vy/vx) + yy)
|
||||
righty = int(((cols-xx)*vy/vx)+yy)
|
||||
# cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||
slope = (lefty - righty) / (1 - cols)
|
||||
angle = math.atan(slope)
|
||||
xpos = x - math.cos(angle) * radius
|
||||
ypos = y - math.sin(angle) * radius
|
||||
xpos2 = x + math.cos(angle) * radius
|
||||
ypos2 = y + math.sin(angle) * radius
|
||||
if xpos > xpos2:
|
||||
swap(xpos, xpos2)
|
||||
swap(ypos, ypos2)
|
||||
if rectangular:
|
||||
cv2.line(orig, (int(xpos), int(ypos)),
|
||||
(int(xpos2), int(ypos2)), (0, 255, 0), 1)
|
||||
# print(str(iteml))
|
||||
# draw the object sizes on the image
|
||||
if args2.show:
|
||||
# cv2.putText(orig, "{:.5f}in".format(itemhr),
|
||||
# (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
# 0.65, (255, 255, 255), 2)
|
||||
cv2.putText(orig, str(objtype),
|
||||
(int(xpos2 + 10), int(ypos2 + 20)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.65, (255, 255, 255), 2)
|
||||
output = ""
|
||||
if objtype == "Unknown":
|
||||
output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
|
||||
if objtype == "Screw" or objtype == "Standoff":
|
||||
output = str(iteml) + "in"
|
||||
if objtype == "Axle":
|
||||
output = "{:.2f}in".format(iteml)
|
||||
cv2.putText(orig, output, # print data
|
||||
(int(xpos2 + 10), int(ypos2 + 40)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.65, (255, 255, 255), 2)
|
||||
|
||||
itemh = smaller(dimA, dimB)
|
||||
itemhr = itemh
|
||||
itemhr *= 16
|
||||
itemhr = round(itemhr)
|
||||
itemhr /= 16
|
||||
if circular and itemwr == 0.75:
|
||||
objtype = "Penny"
|
||||
iteml = 0
|
||||
else:
|
||||
epsilon = 3#0.02*cv2.arcLength(c,True)
|
||||
#print(str(epsilon))
|
||||
approx = cv2.approxPolyDP(c,epsilon,True)
|
||||
hull = cv2.convexHull(approx, returnPoints=False)
|
||||
hull2 = cv2.convexHull(c)
|
||||
defects = cv2.convexityDefects(c,hull)
|
||||
#print(str(defects.size) + " match")
|
||||
cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
|
||||
cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
|
||||
convexness = area_contour / cv2.contourArea(hull2)
|
||||
#print(str(convexness) + " % fill")
|
||||
#if not cv2.isContourConvex(approx):
|
||||
#if cv2.matchShapes(hull, c, 1, 0.0) > 1:
|
||||
if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75):
|
||||
objtype = "Screw"
|
||||
iteml = larger(dimA, dimB)
|
||||
#print("Screw Length (RAW): " + str(iteml))
|
||||
iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
|
||||
#print("Rounded Length: " + str(iteml))
|
||||
else:
|
||||
if itemhr == 0.3125:
|
||||
objtype = "Standoff"
|
||||
iteml = sizeStandoff(itemw)
|
||||
|
||||
if itemhr == 0.1875:
|
||||
objtype = "Axle"
|
||||
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
|
||||
|
||||
rows,cols = orig.shape[:2]
|
||||
[vx,vy,xx,yy] = cv2.fitLine(c, cv2.DIST_L2,0,0.01,0.01)
|
||||
lefty = int((-xx*vy/vx) + yy)
|
||||
righty = int(((cols-xx)*vy/vx)+yy)
|
||||
#cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||
slope = (lefty - righty) / (1 - cols)
|
||||
angle = math.atan(slope)
|
||||
xpos = x - math.cos(angle) * radius
|
||||
ypos = y - math.sin(angle) * radius
|
||||
xpos2 = x + math.cos(angle) * radius
|
||||
ypos2 = y + math.sin(angle) * radius
|
||||
if xpos > xpos2:
|
||||
swap(xpos, xpos2)
|
||||
swap(ypos, ypos2)
|
||||
if rectangular:
|
||||
cv2.line(orig,(int(xpos),int(ypos)),(int(xpos2), int(ypos2)),(0,255,0),1)
|
||||
#print(str(iteml))
|
||||
# draw the object sizes on the image
|
||||
if args2.show:
|
||||
#cv2.putText(orig, "{:.5f}in".format(itemhr),
|
||||
# (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
# 0.65, (255, 255, 255), 2)
|
||||
cv2.putText(orig, str(objtype),
|
||||
(int(xpos2 + 10), int(ypos2 + 20)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.65, (255, 255, 255), 2)
|
||||
output = ""
|
||||
if objtype == "Unknown":
|
||||
output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
|
||||
if objtype == "Screw" or objtype == "Standoff":
|
||||
output = str(iteml) + "in"
|
||||
if objtype == "Axle":
|
||||
output = "{:.2f}in".format(iteml)
|
||||
cv2.putText(orig, output, # print data
|
||||
(int(xpos2 + 10), int(ypos2 + 40)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.65, (255, 255, 255), 2)
|
||||
|
||||
# show the output image
|
||||
cv2.imshow("Item Sorter", orig)
|
||||
cv2.waitKey(25)
|
||||
# show the output image
|
||||
cv2.imshow("Item Sorter", orig)
|
||||
cv2.waitKey(25)
|
||||
|
||||
cv2.waitKey(0)
|
Loading…
x
Reference in New Issue
Block a user