compile to code, runner script
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								__pycache__/detect.cpython-38.pyc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								__pycache__/detect.cpython-38.pyc
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								build/temp.linux-x86_64-3.8/detect.o
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								build/temp.linux-x86_64-3.8/detect.o
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										13
									
								
								compile.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								compile.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
from distutils.core import setup
 | 
			
		||||
from distutils.extension import Extension
 | 
			
		||||
from Cython.Distutils import build_ext
 | 
			
		||||
ext_modules = [
 | 
			
		||||
    Extension("detect",  ["detect.py"]),
 | 
			
		||||
    #Extension("mymodule2",  ["mymodule2.py"]),
 | 
			
		||||
    #   ... all your modules that need be compiled ...
 | 
			
		||||
    ]
 | 
			
		||||
setup(
 | 
			
		||||
    name = 'Item Sorter',
 | 
			
		||||
    cmdclass = {'build_ext': build_ext},
 | 
			
		||||
    ext_modules = ext_modules
 | 
			
		||||
)
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								detect.cpython-38-x86_64-linux-gnu.so
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								detect.cpython-38-x86_64-linux-gnu.so
									
									
									
									
									
										Executable file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										361
									
								
								detect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										361
									
								
								detect.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,361 @@
 | 
			
		||||
# import the necessary packages
 | 
			
		||||
#from imutils import perspective
 | 
			
		||||
from imutils import contours
 | 
			
		||||
import numpy as np
 | 
			
		||||
import argparse
 | 
			
		||||
import imutils
 | 
			
		||||
import cv2
 | 
			
		||||
import math
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
itemw = 0
 | 
			
		||||
itemh = 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def midpoint(ptA, ptB):
 | 
			
		||||
    return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def sizeVexScrew(iteml):
 | 
			
		||||
    # Screw Sizing code
 | 
			
		||||
    # subtract screw head size to find thread length
 | 
			
		||||
    shead = 0.1
 | 
			
		||||
    iteml -= shead
 | 
			
		||||
    #print("Thread Length: " + str(iteml))
 | 
			
		||||
    iteml *= 8
 | 
			
		||||
    iteml = round(iteml)
 | 
			
		||||
    iteml /= 8
 | 
			
		||||
    return iteml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def sizeStandoff(iteml):
 | 
			
		||||
    # Standoff Sizing code
 | 
			
		||||
    iteml *= 2
 | 
			
		||||
    iteml = round(iteml)
 | 
			
		||||
    iteml /= 2
 | 
			
		||||
    return iteml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def larger(a, b):
 | 
			
		||||
    if a >= b:
 | 
			
		||||
        return a
 | 
			
		||||
    else:
 | 
			
		||||
        return b
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def smaller(a, b):
 | 
			
		||||
    if a < b:
 | 
			
		||||
        return a
 | 
			
		||||
    else:
 | 
			
		||||
        return b
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def near(a, b, close):
 | 
			
		||||
    if abs(a-b) < close:
 | 
			
		||||
        return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def swap(a, b):
 | 
			
		||||
    tmp = a
 | 
			
		||||
    a = b
 | 
			
		||||
    b = tmp
 | 
			
		||||
"""
 | 
			
		||||
# construct the argument parse and parse the arguments
 | 
			
		||||
ap = argparse.ArgumentParser()
 | 
			
		||||
ap.add_argument("-i", "--image", required=True,
 | 
			
		||||
                help="path to the input image")
 | 
			
		||||
#ap.add_argument("-c", "--cascade", required=True,
 | 
			
		||||
#                help="path to the cascade")
 | 
			
		||||
ap.add_argument("-w", "--width", type=float, required=True,
 | 
			
		||||
                help="width of the left-most object in the image (in inches)")
 | 
			
		||||
ap.add_argument("-n", "--number", type=int, required=False,
 | 
			
		||||
                    help="object # to measure (from left to right)")
 | 
			
		||||
    ap.add_argument("-s", "--show", action="store_true",
 | 
			
		||||
                    help="show on the screen")
 | 
			
		||||
    args = vars(ap.parse_args())
 | 
			
		||||
    args2 = ap.parse_args()"""
 | 
			
		||||
def detect(calibration_width, img_file, show):
 | 
			
		||||
    selected = 2
 | 
			
		||||
    #if type(args["number"]) == type(selected):
 | 
			
		||||
    #    selected = args["number"]
 | 
			
		||||
 | 
			
		||||
    # load the image, convert it to grayscale, and blur it slightly
 | 
			
		||||
    image = cv2.imread(img_file)
 | 
			
		||||
    #image = cv2.resize(image, (int(image.shape[1]*1), int(image.shape[0]*1)))
 | 
			
		||||
    image = cv2.resize(image, (1000, int(
 | 
			
		||||
        image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
 | 
			
		||||
 | 
			
		||||
    if show:
 | 
			
		||||
        cv2.namedWindow("Item Sorter")
 | 
			
		||||
        cv2.imshow("Item Sorter", image)
 | 
			
		||||
        cv2.waitKey(0)
 | 
			
		||||
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
 | 
			
		||||
    if show:
 | 
			
		||||
        cv2.imshow("Item Sorter", gray)
 | 
			
		||||
        cv2.waitKey(0)
 | 
			
		||||
 | 
			
		||||
    # perform edge detection, then perform a dilation + erosion to
 | 
			
		||||
    # close gaps in between object edges
 | 
			
		||||
    edged = cv2.Canny(gray, 50, 100)
 | 
			
		||||
    if show:
 | 
			
		||||
        cv2.imshow("Item Sorter", edged)
 | 
			
		||||
        cv2.waitKey(0)
 | 
			
		||||
 | 
			
		||||
    edged = cv2.dilate(edged, None, iterations=1)
 | 
			
		||||
    edged = cv2.erode(edged, None, iterations=1)
 | 
			
		||||
 | 
			
		||||
    if show:
 | 
			
		||||
        cv2.imshow("Item Sorter", edged)
 | 
			
		||||
        cv2.waitKey(0)
 | 
			
		||||
    # find contours in the edge map
 | 
			
		||||
    cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
 | 
			
		||||
                            cv2.CHAIN_APPROX_SIMPLE)
 | 
			
		||||
    cnts = imutils.grab_contours(cnts)
 | 
			
		||||
 | 
			
		||||
    # sort the contours from left-to-right and initialize the
 | 
			
		||||
    # 'pixels per metric' calibration variable
 | 
			
		||||
    #(cnts, _) = contours.sort_contours(cnts)
 | 
			
		||||
    pixelsPerMetric = None
 | 
			
		||||
    num = 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    # Calibration loop
 | 
			
		||||
    for c in cnts:
 | 
			
		||||
        # if the contour is not sufficiently large, ignore it
 | 
			
		||||
        if cv2.contourArea(c) < 100:
 | 
			
		||||
            continue
 | 
			
		||||
        # compute the rotated bounding box of the contour
 | 
			
		||||
        orig = image.copy()
 | 
			
		||||
        box = cv2.minAreaRect(c)
 | 
			
		||||
        # xpos,ypos,w,h = cv2.boundingRect(c)
 | 
			
		||||
        # crop_img = orig[ypos:ypos+h, xpos:xpos+w]
 | 
			
		||||
        # cv2.imwrite("object_images/IMG_" + str(w*h) + ".jpg", crop_img) # create training images
 | 
			
		||||
        box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
        box = np.array(box, dtype="int")
 | 
			
		||||
        #box = perspective.order_points(box)
 | 
			
		||||
        (tl, tr, br, bl) = box
 | 
			
		||||
        (tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
        (blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
        (tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
        (trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
        dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
 | 
			
		||||
                            np.array((blbrX, blbrY, 0)))
 | 
			
		||||
        dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
 | 
			
		||||
                            np.array((trbrX, trbrY, 0)))
 | 
			
		||||
        area_box = dA * dB
 | 
			
		||||
        (x, y), radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
        area_contour = cv2.contourArea(c)
 | 
			
		||||
        area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
        boxiness = area_contour / area_box
 | 
			
		||||
        circleness = area_contour / area_circle
 | 
			
		||||
        circular = False
 | 
			
		||||
        rectangular = False
 | 
			
		||||
        if boxiness > circleness:
 | 
			
		||||
            rectangular = True
 | 
			
		||||
            cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
        else:
 | 
			
		||||
            circular = True
 | 
			
		||||
            cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 2)
 | 
			
		||||
            mask = np.zeros(gray.shape, np.uint8)
 | 
			
		||||
            cv2.drawContours(mask, [c], 0, 255, -1)
 | 
			
		||||
            #pixelpoints = np.transpose(np.nonzero(mask))
 | 
			
		||||
            hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
 | 
			
		||||
            mean_val = cv2.mean(hsv, mask=mask)
 | 
			
		||||
            #print(str(mean_val[0]))
 | 
			
		||||
            #print(", " + str(mean_val[0]/mean_val[2]))
 | 
			
		||||
            #print(", " + str(mean_val[2]/mean_val[1]))
 | 
			
		||||
        if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
 | 
			
		||||
            # and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
 | 
			
		||||
            pixelsPerMetric = smaller(dA, dB) / calibration_width
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    orig = image.copy()
 | 
			
		||||
    objtype = "Unknown"
 | 
			
		||||
    objname = ""
 | 
			
		||||
    # loop over the contours individually
 | 
			
		||||
    for c in cnts:
 | 
			
		||||
        #orig = image.copy()
 | 
			
		||||
        num += 1
 | 
			
		||||
        # if the contour is not sufficiently large, ignore it
 | 
			
		||||
        if cv2.contourArea(c) < 100 or pixelsPerMetric is None:
 | 
			
		||||
            continue
 | 
			
		||||
        # compute the rotated bounding box of the contour
 | 
			
		||||
 | 
			
		||||
        box = cv2.minAreaRect(c)
 | 
			
		||||
        box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
        box = np.array(box, dtype="int")
 | 
			
		||||
 | 
			
		||||
        # order the points in the contour such that they appear
 | 
			
		||||
        # in top-left, top-right, bottom-right, and bottom-left
 | 
			
		||||
        # order, then draw the outline of the rotated bounding
 | 
			
		||||
        # box
 | 
			
		||||
        #box = perspective.order_points(box)
 | 
			
		||||
 | 
			
		||||
        # loop over the original points and draw them
 | 
			
		||||
        # for (x, y) in box:
 | 
			
		||||
        #cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
 | 
			
		||||
 | 
			
		||||
        # unpack the ordered bounding box, then compute the midpoint
 | 
			
		||||
        # between the top-left and top-right coordinates, followed by
 | 
			
		||||
        # the midpoint between bottom-left and bottom-right coordinates
 | 
			
		||||
        (tl, tr, br, bl) = box
 | 
			
		||||
        (tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
        (blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
 | 
			
		||||
        # compute the midpoint between the top-left and top-right points,
 | 
			
		||||
        # followed by the midpoint between the top-right and bottom-right
 | 
			
		||||
        (tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
        (trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
        # draw the midpoints on the image
 | 
			
		||||
        #cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
        #cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
        #cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
 | 
			
		||||
        #cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
 | 
			
		||||
        # draw lines between the midpoints
 | 
			
		||||
    # compute the Euclidean distance between the midpoints
 | 
			
		||||
        dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
 | 
			
		||||
                            np.array((blbrX, blbrY, 0)))
 | 
			
		||||
        dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
 | 
			
		||||
                            np.array((trbrX, trbrY, 0)))
 | 
			
		||||
 | 
			
		||||
        dimA = dA / pixelsPerMetric
 | 
			
		||||
        dimB = dB / pixelsPerMetric
 | 
			
		||||
 | 
			
		||||
        if num == num or show:
 | 
			
		||||
            area_box = dA * dB
 | 
			
		||||
            (x, y), radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
            area_contour = cv2.contourArea(c)
 | 
			
		||||
            area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
            boxiness = area_contour / area_box
 | 
			
		||||
            circleness = area_contour / area_circle
 | 
			
		||||
            circular = False
 | 
			
		||||
            rectangular = False
 | 
			
		||||
            if boxiness > circleness:
 | 
			
		||||
                rectangular = True
 | 
			
		||||
                #cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
            else:
 | 
			
		||||
                circular = True
 | 
			
		||||
                cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 1)
 | 
			
		||||
 | 
			
		||||
            objtype = "Unknown"
 | 
			
		||||
            itemw = larger(dimA, dimB)
 | 
			
		||||
            itemwr = itemw
 | 
			
		||||
            itemwr *= 8
 | 
			
		||||
            itemwr = round(itemwr)
 | 
			
		||||
            itemwr /= 8
 | 
			
		||||
 | 
			
		||||
            itemh = smaller(dimA, dimB)
 | 
			
		||||
            itemhr = itemh
 | 
			
		||||
            itemhr *= 16
 | 
			
		||||
            itemhr = round(itemhr)
 | 
			
		||||
            itemhr /= 16
 | 
			
		||||
            if circular and itemwr == 0.75:
 | 
			
		||||
                objtype = "Penny"
 | 
			
		||||
                iteml = 0
 | 
			
		||||
            else:
 | 
			
		||||
                if circular and near(radius * 2 / pixelsPerMetric, 0.38, 0.03):
 | 
			
		||||
                    # Keps nut or spacer
 | 
			
		||||
                    objtype = "Spacer"
 | 
			
		||||
                    mask = np.zeros(gray.shape, np.uint8)
 | 
			
		||||
                    cv2.drawContours(mask, [c], 0, 255, -1)
 | 
			
		||||
                    #pixelpoints = np.transpose(np.nonzero(mask))
 | 
			
		||||
                    hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
 | 
			
		||||
                    mean_val = cv2.mean(hsv, mask=mask)
 | 
			
		||||
                    #print(str(mean_val[0]))
 | 
			
		||||
                    if near(mean_val[0], 47, 5) and near(mean_val[1], 70, 5) and near(mean_val[2], 78, 5):
 | 
			
		||||
                        objtype = "Keps Nut"
 | 
			
		||||
                if circular and near(radius / pixelsPerMetric, 0.23, 0.02):
 | 
			
		||||
                    objtype = "Washer"
 | 
			
		||||
                epsilon = 3  # 0.02*cv2.arcLength(c,True)
 | 
			
		||||
                # print(str(epsilon))
 | 
			
		||||
                approx = cv2.approxPolyDP(c, epsilon, True)
 | 
			
		||||
                hull = cv2.convexHull(approx, returnPoints=False)
 | 
			
		||||
                hull2 = cv2.convexHull(c)
 | 
			
		||||
                defects = cv2.convexityDefects(c, hull)
 | 
			
		||||
                #print(str(defects.size) + " match")
 | 
			
		||||
                cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
 | 
			
		||||
                cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
 | 
			
		||||
                convexness = area_contour / cv2.contourArea(hull2)
 | 
			
		||||
                #print(str(convexness) + " % fill")
 | 
			
		||||
                # if not cv2.isContourConvex(approx):
 | 
			
		||||
                # if cv2.matchShapes(hull, c, 1, 0.0) > 1:
 | 
			
		||||
                if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
 | 
			
		||||
                    objtype = "Screw"
 | 
			
		||||
                    iteml = larger(dimA, dimB)
 | 
			
		||||
                    #print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
                    iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
 | 
			
		||||
                    #print("Rounded Length: " + str(iteml))
 | 
			
		||||
                else:
 | 
			
		||||
                    if itemhr == 0.3125 and rectangular:
 | 
			
		||||
                        objtype = "Standoff"
 | 
			
		||||
                        iteml = sizeStandoff(itemw)
 | 
			
		||||
 | 
			
		||||
                    if itemhr == 0.1875 and rectangular:
 | 
			
		||||
                        objtype = "Axle"
 | 
			
		||||
                        iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
 | 
			
		||||
 | 
			
		||||
            rows, cols = orig.shape[:2]
 | 
			
		||||
            [vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
 | 
			
		||||
            lefty = int((-xx*vy/vx) + yy)
 | 
			
		||||
            righty = int(((cols-xx)*vy/vx)+yy)
 | 
			
		||||
            # cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
 | 
			
		||||
            slope = (lefty - righty) / (1 - cols)
 | 
			
		||||
            angle = math.atan(slope)
 | 
			
		||||
            xpos = x - math.cos(angle) * radius
 | 
			
		||||
            ypos = y - math.sin(angle) * radius
 | 
			
		||||
            xpos2 = x + math.cos(angle) * radius
 | 
			
		||||
            ypos2 = y + math.sin(angle) * radius
 | 
			
		||||
            if xpos > xpos2:
 | 
			
		||||
                swap(xpos, xpos2)
 | 
			
		||||
                swap(ypos, ypos2)
 | 
			
		||||
            if rectangular:
 | 
			
		||||
                cv2.line(orig, (int(xpos), int(ypos)),
 | 
			
		||||
                         (int(xpos2), int(ypos2)), (0, 255, 0), 1)
 | 
			
		||||
            # print(str(iteml))
 | 
			
		||||
            # draw the object sizes on the image
 | 
			
		||||
            if show or True:
 | 
			
		||||
                # cv2.putText(orig, "{:.5f}in".format(itemhr),
 | 
			
		||||
                #	(int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                #	0.65, (255, 255, 255), 2)
 | 
			
		||||
                if circular:
 | 
			
		||||
                    cv2.putText(orig, str(objtype),
 | 
			
		||||
                                (int(x - 25), int(y + radius + 20)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.55, (255, 255, 255), 2)
 | 
			
		||||
                else:
 | 
			
		||||
                    cv2.putText(orig, str(objtype),
 | 
			
		||||
                                (int(xpos2 + 10), int(ypos2 + 20)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.55, (255, 255, 255), 2)
 | 
			
		||||
                output = ""
 | 
			
		||||
                objname = objtype;
 | 
			
		||||
                if objtype == "Unknown":
 | 
			
		||||
                    output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
 | 
			
		||||
                if objtype == "Screw" or objtype == "Standoff":
 | 
			
		||||
                    output = str(iteml) + "in"
 | 
			
		||||
                    objname += str(iteml)
 | 
			
		||||
                if objtype == "Axle":
 | 
			
		||||
                    output = "{:.2f}in".format(iteml)
 | 
			
		||||
                    objname += str(itemwr)
 | 
			
		||||
                print(objname)
 | 
			
		||||
                if circular:
 | 
			
		||||
                    cv2.putText(orig, output,  # print data
 | 
			
		||||
                                (int(x - 25), int(y + radius + 35)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.5, (255, 255, 255), 1)
 | 
			
		||||
                else:
 | 
			
		||||
                    cv2.putText(orig, output,  # print data
 | 
			
		||||
                                (int(xpos2 + 10), int(ypos2 + 35)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.5, (255, 255, 255), 1)
 | 
			
		||||
 | 
			
		||||
        # show the output image
 | 
			
		||||
                if show:
 | 
			
		||||
                    cv2.imshow("Item Sorter", orig)
 | 
			
		||||
                #cv2.waitKey(1)
 | 
			
		||||
 | 
			
		||||
    cv2.waitKey(0)
 | 
			
		||||
							
								
								
									
										362
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										362
									
								
								main.py
									
									
									
									
									
								
							@@ -1,360 +1,2 @@
 | 
			
		||||
# import the necessary packages
 | 
			
		||||
#from imutils import perspective
 | 
			
		||||
from imutils import contours
 | 
			
		||||
import numpy as np
 | 
			
		||||
import argparse
 | 
			
		||||
import imutils
 | 
			
		||||
import cv2
 | 
			
		||||
import math
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
itemw = 0
 | 
			
		||||
itemh = 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def midpoint(ptA, ptB):
 | 
			
		||||
    return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def sizeVexScrew(iteml):
 | 
			
		||||
    # Screw Sizing code
 | 
			
		||||
    # subtract screw head size to find thread length
 | 
			
		||||
    shead = 0.1
 | 
			
		||||
    iteml -= shead
 | 
			
		||||
    #print("Thread Length: " + str(iteml))
 | 
			
		||||
    iteml *= 8
 | 
			
		||||
    iteml = round(iteml)
 | 
			
		||||
    iteml /= 8
 | 
			
		||||
    return iteml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def sizeStandoff(iteml):
 | 
			
		||||
    # Standoff Sizing code
 | 
			
		||||
    iteml *= 2
 | 
			
		||||
    iteml = round(iteml)
 | 
			
		||||
    iteml /= 2
 | 
			
		||||
    return iteml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def larger(a, b):
 | 
			
		||||
    if a >= b:
 | 
			
		||||
        return a
 | 
			
		||||
    else:
 | 
			
		||||
        return b
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def smaller(a, b):
 | 
			
		||||
    if a < b:
 | 
			
		||||
        return a
 | 
			
		||||
    else:
 | 
			
		||||
        return b
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def near(a, b, close):
 | 
			
		||||
    if abs(a-b) < close:
 | 
			
		||||
        return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def swap(a, b):
 | 
			
		||||
    tmp = a
 | 
			
		||||
    a = b
 | 
			
		||||
    b = tmp
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# construct the argument parse and parse the arguments
 | 
			
		||||
ap = argparse.ArgumentParser()
 | 
			
		||||
ap.add_argument("-i", "--image", required=True,
 | 
			
		||||
                help="path to the input image")
 | 
			
		||||
#ap.add_argument("-c", "--cascade", required=True,
 | 
			
		||||
#                help="path to the cascade")
 | 
			
		||||
ap.add_argument("-w", "--width", type=float, required=True,
 | 
			
		||||
                help="width of the left-most object in the image (in inches)")
 | 
			
		||||
ap.add_argument("-n", "--number", type=int, required=False,
 | 
			
		||||
                help="object # to measure (from left to right)")
 | 
			
		||||
ap.add_argument("-s", "--show", action="store_true",
 | 
			
		||||
                help="show on the screen")
 | 
			
		||||
args = vars(ap.parse_args())
 | 
			
		||||
args2 = ap.parse_args()
 | 
			
		||||
selected = 2
 | 
			
		||||
if type(args["number"]) == type(selected):
 | 
			
		||||
    selected = args["number"]
 | 
			
		||||
 | 
			
		||||
# load the image, convert it to grayscale, and blur it slightly
 | 
			
		||||
image = cv2.imread(args["image"])
 | 
			
		||||
#image = cv2.resize(image, (int(image.shape[1]*1), int(image.shape[0]*1)))
 | 
			
		||||
image = cv2.resize(image, (1000, int(
 | 
			
		||||
    image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
 | 
			
		||||
 | 
			
		||||
if args2.show:
 | 
			
		||||
    cv2.namedWindow("Item Sorter")
 | 
			
		||||
    cv2.imshow("Item Sorter", image)
 | 
			
		||||
    cv2.waitKey(0)
 | 
			
		||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
gray = cv2.GaussianBlur(gray, (5, 5), 0)
 | 
			
		||||
if args2.show:
 | 
			
		||||
    cv2.imshow("Item Sorter", gray)
 | 
			
		||||
    cv2.waitKey(0)
 | 
			
		||||
 | 
			
		||||
# perform edge detection, then perform a dilation + erosion to
 | 
			
		||||
# close gaps in between object edges
 | 
			
		||||
edged = cv2.Canny(gray, 50, 100)
 | 
			
		||||
if args2.show:
 | 
			
		||||
    cv2.imshow("Item Sorter", edged)
 | 
			
		||||
    cv2.waitKey(0)
 | 
			
		||||
 | 
			
		||||
edged = cv2.dilate(edged, None, iterations=1)
 | 
			
		||||
edged = cv2.erode(edged, None, iterations=1)
 | 
			
		||||
 | 
			
		||||
if args2.show:
 | 
			
		||||
    cv2.imshow("Item Sorter", edged)
 | 
			
		||||
    cv2.waitKey(0)
 | 
			
		||||
# find contours in the edge map
 | 
			
		||||
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
 | 
			
		||||
                        cv2.CHAIN_APPROX_SIMPLE)
 | 
			
		||||
cnts = imutils.grab_contours(cnts)
 | 
			
		||||
 | 
			
		||||
# sort the contours from left-to-right and initialize the
 | 
			
		||||
# 'pixels per metric' calibration variable
 | 
			
		||||
#(cnts, _) = contours.sort_contours(cnts)
 | 
			
		||||
pixelsPerMetric = None
 | 
			
		||||
num = 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Calibration loop
 | 
			
		||||
for c in cnts:
 | 
			
		||||
    # if the contour is not sufficiently large, ignore it
 | 
			
		||||
    if cv2.contourArea(c) < 100:
 | 
			
		||||
        continue
 | 
			
		||||
    # compute the rotated bounding box of the contour
 | 
			
		||||
    orig = image.copy()
 | 
			
		||||
    box = cv2.minAreaRect(c)
 | 
			
		||||
    # xpos,ypos,w,h = cv2.boundingRect(c)
 | 
			
		||||
    # crop_img = orig[ypos:ypos+h, xpos:xpos+w]
 | 
			
		||||
    # cv2.imwrite("object_images/IMG_" + str(w*h) + ".jpg", crop_img) # create training images
 | 
			
		||||
    box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
    box = np.array(box, dtype="int")
 | 
			
		||||
    #box = perspective.order_points(box)
 | 
			
		||||
    (tl, tr, br, bl) = box
 | 
			
		||||
    (tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
    (blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
    (tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
    (trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
    dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
 | 
			
		||||
                        np.array((blbrX, blbrY, 0)))
 | 
			
		||||
    dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
 | 
			
		||||
                        np.array((trbrX, trbrY, 0)))
 | 
			
		||||
    area_box = dA * dB
 | 
			
		||||
    (x, y), radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
    area_contour = cv2.contourArea(c)
 | 
			
		||||
    area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
    boxiness = area_contour / area_box
 | 
			
		||||
    circleness = area_contour / area_circle
 | 
			
		||||
    circular = False
 | 
			
		||||
    rectangular = False
 | 
			
		||||
    if boxiness > circleness:
 | 
			
		||||
        rectangular = True
 | 
			
		||||
        cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
    else:
 | 
			
		||||
        circular = True
 | 
			
		||||
        cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 2)
 | 
			
		||||
        mask = np.zeros(gray.shape, np.uint8)
 | 
			
		||||
        cv2.drawContours(mask, [c], 0, 255, -1)
 | 
			
		||||
        #pixelpoints = np.transpose(np.nonzero(mask))
 | 
			
		||||
        hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
 | 
			
		||||
        mean_val = cv2.mean(hsv, mask=mask)
 | 
			
		||||
        #print(str(mean_val[0]))
 | 
			
		||||
        #print(", " + str(mean_val[0]/mean_val[2]))
 | 
			
		||||
        #print(", " + str(mean_val[2]/mean_val[1]))
 | 
			
		||||
    if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
 | 
			
		||||
        # and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
 | 
			
		||||
        pixelsPerMetric = smaller(dA, dB) / args["width"]
 | 
			
		||||
        continue
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
orig = image.copy()
 | 
			
		||||
objtype = "Unknown"
 | 
			
		||||
objname = ""
 | 
			
		||||
# loop over the contours individually
 | 
			
		||||
for c in cnts:
 | 
			
		||||
    #orig = image.copy()
 | 
			
		||||
    num += 1
 | 
			
		||||
    # if the contour is not sufficiently large, ignore it
 | 
			
		||||
    if cv2.contourArea(c) < 100 or pixelsPerMetric is None:
 | 
			
		||||
        continue
 | 
			
		||||
    # compute the rotated bounding box of the contour
 | 
			
		||||
 | 
			
		||||
    box = cv2.minAreaRect(c)
 | 
			
		||||
    box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
    box = np.array(box, dtype="int")
 | 
			
		||||
 | 
			
		||||
    # order the points in the contour such that they appear
 | 
			
		||||
    # in top-left, top-right, bottom-right, and bottom-left
 | 
			
		||||
    # order, then draw the outline of the rotated bounding
 | 
			
		||||
    # box
 | 
			
		||||
    #box = perspective.order_points(box)
 | 
			
		||||
 | 
			
		||||
    # loop over the original points and draw them
 | 
			
		||||
    # for (x, y) in box:
 | 
			
		||||
    #cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
 | 
			
		||||
 | 
			
		||||
    # unpack the ordered bounding box, then compute the midpoint
 | 
			
		||||
    # between the top-left and top-right coordinates, followed by
 | 
			
		||||
    # the midpoint between bottom-left and bottom-right coordinates
 | 
			
		||||
    (tl, tr, br, bl) = box
 | 
			
		||||
    (tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
    (blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
 | 
			
		||||
    # compute the midpoint between the top-left and top-right points,
 | 
			
		||||
    # followed by the midpoint between the top-right and bottom-right
 | 
			
		||||
    (tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
    (trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
    # draw the midpoints on the image
 | 
			
		||||
    #cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
    #cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
    #cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
 | 
			
		||||
    #cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
 | 
			
		||||
    # draw lines between the midpoints
 | 
			
		||||
# compute the Euclidean distance between the midpoints
 | 
			
		||||
    dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
 | 
			
		||||
                        np.array((blbrX, blbrY, 0)))
 | 
			
		||||
    dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
 | 
			
		||||
                        np.array((trbrX, trbrY, 0)))
 | 
			
		||||
 | 
			
		||||
    dimA = dA / pixelsPerMetric
 | 
			
		||||
    dimB = dB / pixelsPerMetric
 | 
			
		||||
 | 
			
		||||
    if num == selected or args2.show:
 | 
			
		||||
        area_box = dA * dB
 | 
			
		||||
        (x, y), radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
        area_contour = cv2.contourArea(c)
 | 
			
		||||
        area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
        boxiness = area_contour / area_box
 | 
			
		||||
        circleness = area_contour / area_circle
 | 
			
		||||
        circular = False
 | 
			
		||||
        rectangular = False
 | 
			
		||||
        if boxiness > circleness:
 | 
			
		||||
            rectangular = True
 | 
			
		||||
            #cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
        else:
 | 
			
		||||
            circular = True
 | 
			
		||||
            cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 1)
 | 
			
		||||
 | 
			
		||||
        objtype = "Unknown"
 | 
			
		||||
        itemw = larger(dimA, dimB)
 | 
			
		||||
        itemwr = itemw
 | 
			
		||||
        itemwr *= 8
 | 
			
		||||
        itemwr = round(itemwr)
 | 
			
		||||
        itemwr /= 8
 | 
			
		||||
 | 
			
		||||
        itemh = smaller(dimA, dimB)
 | 
			
		||||
        itemhr = itemh
 | 
			
		||||
        itemhr *= 16
 | 
			
		||||
        itemhr = round(itemhr)
 | 
			
		||||
        itemhr /= 16
 | 
			
		||||
        if circular and itemwr == 0.75:
 | 
			
		||||
            objtype = "Penny"
 | 
			
		||||
            iteml = 0
 | 
			
		||||
        else:
 | 
			
		||||
            if circular and near(radius * 2 / pixelsPerMetric, 0.38, 0.03):
 | 
			
		||||
                # Keps nut or spacer
 | 
			
		||||
                objtype = "Spacer"
 | 
			
		||||
                mask = np.zeros(gray.shape, np.uint8)
 | 
			
		||||
                cv2.drawContours(mask, [c], 0, 255, -1)
 | 
			
		||||
                #pixelpoints = np.transpose(np.nonzero(mask))
 | 
			
		||||
                hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
 | 
			
		||||
                mean_val = cv2.mean(hsv, mask=mask)
 | 
			
		||||
                #print(str(mean_val[0]))
 | 
			
		||||
                if near(mean_val[0], 47, 5) and near(mean_val[1], 70, 5) and near(mean_val[2], 78, 5):
 | 
			
		||||
                    objtype = "Keps Nut"
 | 
			
		||||
            if circular and near(radius / pixelsPerMetric, 0.23, 0.02):
 | 
			
		||||
                objtype = "Washer"
 | 
			
		||||
            epsilon = 3  # 0.02*cv2.arcLength(c,True)
 | 
			
		||||
            # print(str(epsilon))
 | 
			
		||||
            approx = cv2.approxPolyDP(c, epsilon, True)
 | 
			
		||||
            hull = cv2.convexHull(approx, returnPoints=False)
 | 
			
		||||
            hull2 = cv2.convexHull(c)
 | 
			
		||||
            defects = cv2.convexityDefects(c, hull)
 | 
			
		||||
            #print(str(defects.size) + " match")
 | 
			
		||||
            cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
 | 
			
		||||
            cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
 | 
			
		||||
            convexness = area_contour / cv2.contourArea(hull2)
 | 
			
		||||
            #print(str(convexness) + " % fill")
 | 
			
		||||
            # if not cv2.isContourConvex(approx):
 | 
			
		||||
            # if cv2.matchShapes(hull, c, 1, 0.0) > 1:
 | 
			
		||||
            if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
 | 
			
		||||
                objtype = "Screw"
 | 
			
		||||
                iteml = larger(dimA, dimB)
 | 
			
		||||
                #print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
                iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
 | 
			
		||||
                #print("Rounded Length: " + str(iteml))
 | 
			
		||||
            else:
 | 
			
		||||
                if itemhr == 0.3125 and rectangular:
 | 
			
		||||
                    objtype = "Standoff"
 | 
			
		||||
                    iteml = sizeStandoff(itemw)
 | 
			
		||||
 | 
			
		||||
                if itemhr == 0.1875 and rectangular:
 | 
			
		||||
                    objtype = "Axle"
 | 
			
		||||
                    iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
 | 
			
		||||
 | 
			
		||||
        rows, cols = orig.shape[:2]
 | 
			
		||||
        [vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
 | 
			
		||||
        lefty = int((-xx*vy/vx) + yy)
 | 
			
		||||
        righty = int(((cols-xx)*vy/vx)+yy)
 | 
			
		||||
        # cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
 | 
			
		||||
        slope = (lefty - righty) / (1 - cols)
 | 
			
		||||
        angle = math.atan(slope)
 | 
			
		||||
        xpos = x - math.cos(angle) * radius
 | 
			
		||||
        ypos = y - math.sin(angle) * radius
 | 
			
		||||
        xpos2 = x + math.cos(angle) * radius
 | 
			
		||||
        ypos2 = y + math.sin(angle) * radius
 | 
			
		||||
        if xpos > xpos2:
 | 
			
		||||
            swap(xpos, xpos2)
 | 
			
		||||
            swap(ypos, ypos2)
 | 
			
		||||
        if rectangular:
 | 
			
		||||
            cv2.line(orig, (int(xpos), int(ypos)),
 | 
			
		||||
                     (int(xpos2), int(ypos2)), (0, 255, 0), 1)
 | 
			
		||||
        # print(str(iteml))
 | 
			
		||||
        # draw the object sizes on the image
 | 
			
		||||
        if args2.show:
 | 
			
		||||
            # cv2.putText(orig, "{:.5f}in".format(itemhr),
 | 
			
		||||
            #	(int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
            #	0.65, (255, 255, 255), 2)
 | 
			
		||||
            if circular:
 | 
			
		||||
                cv2.putText(orig, str(objtype),
 | 
			
		||||
                            (int(x - 25), int(y + radius + 20)
 | 
			
		||||
                             ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                            0.55, (255, 255, 255), 2)
 | 
			
		||||
            else:
 | 
			
		||||
                cv2.putText(orig, str(objtype),
 | 
			
		||||
                            (int(xpos2 + 10), int(ypos2 + 20)
 | 
			
		||||
                             ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                            0.55, (255, 255, 255), 2)
 | 
			
		||||
            output = ""
 | 
			
		||||
            objname = objtype;
 | 
			
		||||
            if objtype == "Unknown":
 | 
			
		||||
                output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
 | 
			
		||||
            if objtype == "Screw" or objtype == "Standoff":
 | 
			
		||||
                output = str(iteml) + "in"
 | 
			
		||||
                objname += str(iteml)
 | 
			
		||||
            if objtype == "Axle":
 | 
			
		||||
                output = "{:.2f}in".format(iteml)
 | 
			
		||||
                objname += str(itemwr)
 | 
			
		||||
            print(objname)
 | 
			
		||||
            if circular:
 | 
			
		||||
                cv2.putText(orig, output,  # print data
 | 
			
		||||
                            (int(x - 25), int(y + radius + 35)
 | 
			
		||||
                             ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                            0.5, (255, 255, 255), 1)
 | 
			
		||||
            else:
 | 
			
		||||
                cv2.putText(orig, output,  # print data
 | 
			
		||||
                            (int(xpos2 + 10), int(ypos2 + 35)
 | 
			
		||||
                             ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                            0.5, (255, 255, 255), 1)
 | 
			
		||||
 | 
			
		||||
    # show the output image
 | 
			
		||||
            cv2.imshow("Item Sorter", orig)
 | 
			
		||||
            #cv2.waitKey(1)
 | 
			
		||||
 | 
			
		||||
cv2.waitKey(0)
 | 
			
		||||
from logic import main      # this comes from a compiled binary
 | 
			
		||||
main ()
 | 
			
		||||
							
								
								
									
										12
									
								
								run_detect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								run_detect.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,12 @@
 | 
			
		||||
import detect
 | 
			
		||||
import timeit
 | 
			
		||||
calibration_width = 0.75
 | 
			
		||||
image = "img7.jpg"
 | 
			
		||||
images = ("img.jpg", "img2.jpg", "img3.jpg", "img4.jpg", "img5.jpg", "img6.jpg", "img7.jpg", "img8.jpg")
 | 
			
		||||
show = False
 | 
			
		||||
def go():
 | 
			
		||||
    #for file in images:
 | 
			
		||||
    detect.detect(calibration_width, "img7.jpg", show)
 | 
			
		||||
 | 
			
		||||
elapsed_time = timeit.timeit(go, number=100)/100
 | 
			
		||||
print(elapsed_time)
 | 
			
		||||
		Reference in New Issue
	
	Block a user