Add item differentiation: screws, standoffs, axles, penny, plus a lot more
This commit is contained in:
		
							
								
								
									
										174
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										174
									
								
								main.py
									
									
									
									
									
								
							@@ -24,13 +24,28 @@ def sizeVexScrew(iteml):
 | 
			
		||||
	iteml = round(iteml)
 | 
			
		||||
	iteml /= 8
 | 
			
		||||
	return iteml
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
def sizeStandoff(iteml):
 | 
			
		||||
	# Standoff Sizing code
 | 
			
		||||
 | 
			
		||||
	#print("Thread Length: " + str(iteml))
 | 
			
		||||
	iteml *= 4
 | 
			
		||||
	iteml = round(iteml)
 | 
			
		||||
	iteml /= 4
 | 
			
		||||
	return iteml
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def larger(a, b):
 | 
			
		||||
	if a >= b:
 | 
			
		||||
		return a
 | 
			
		||||
	else: 
 | 
			
		||||
		return b
 | 
			
		||||
 | 
			
		||||
def smaller(a, b):
 | 
			
		||||
	if a < b:
 | 
			
		||||
		return a
 | 
			
		||||
	else: 
 | 
			
		||||
		return b
 | 
			
		||||
# construct the argument parse and parse the arguments
 | 
			
		||||
ap = argparse.ArgumentParser()
 | 
			
		||||
ap.add_argument("-i", "--image", required=True,
 | 
			
		||||
@@ -49,12 +64,15 @@ if type(args["number"]) == type(selected):
 | 
			
		||||
 | 
			
		||||
# load the image, convert it to grayscale, and blur it slightly
 | 
			
		||||
image = cv2.imread(args["image"])
 | 
			
		||||
image = cv2.resize(image, (image.shape[1]*2, image.shape[0]*2), interpolation = cv2.INTER_NEAREST)
 | 
			
		||||
image = cv2.resize(image, (int(image.shape[1]*0.2), int(image.shape[0]*0.2)), interpolation = cv2.INTER_NEAREST)
 | 
			
		||||
if args2.show:
 | 
			
		||||
	cv2.imshow("Screw Length Detection", image)
 | 
			
		||||
	cv2.imshow("Item Sorter", image)
 | 
			
		||||
	cv2.waitKey(0)
 | 
			
		||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
gray = cv2.GaussianBlur(gray, (7, 7), 0)
 | 
			
		||||
if args2.show:
 | 
			
		||||
	cv2.imshow("Item Sorter", gray)
 | 
			
		||||
	cv2.waitKey(0)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# perform edge detection, then perform a dilation + erosion to
 | 
			
		||||
@@ -62,8 +80,9 @@ gray = cv2.GaussianBlur(gray, (7, 7), 0)
 | 
			
		||||
edged = cv2.Canny(gray, 50, 100)
 | 
			
		||||
edged = cv2.dilate(edged, None, iterations=1)
 | 
			
		||||
edged = cv2.erode(edged, None, iterations=1)
 | 
			
		||||
 | 
			
		||||
if args2.show:
 | 
			
		||||
	cv2.imshow("Screw Length Detection", edged)
 | 
			
		||||
	cv2.imshow("Item Sorter", edged)
 | 
			
		||||
	cv2.waitKey(0)
 | 
			
		||||
# find contours in the edge map
 | 
			
		||||
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
 | 
			
		||||
@@ -75,6 +94,62 @@ cnts = imutils.grab_contours(cnts)
 | 
			
		||||
(cnts, _) = contours.sort_contours(cnts)
 | 
			
		||||
pixelsPerMetric = None
 | 
			
		||||
num = 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Calibration loop
 | 
			
		||||
for c in cnts:
 | 
			
		||||
	# if the contour is not sufficiently large, ignore it
 | 
			
		||||
	if cv2.contourArea(c) < 100:
 | 
			
		||||
		continue
 | 
			
		||||
	# compute the rotated bounding box of the contour
 | 
			
		||||
	orig = image.copy()
 | 
			
		||||
	box = cv2.minAreaRect(c)
 | 
			
		||||
	box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
	box = np.array(box, dtype="int")
 | 
			
		||||
	box = perspective.order_points(box)
 | 
			
		||||
	(tl, tr, br, bl) = box
 | 
			
		||||
	(tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
	(blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
	(tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
	(trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
	dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0)))
 | 
			
		||||
	dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0)))
 | 
			
		||||
	area_box = dA * dB
 | 
			
		||||
	(x,y),radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
	area_contour = cv2.contourArea(c)
 | 
			
		||||
	area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
	boxiness = area_contour / area_box
 | 
			
		||||
	circleness = area_contour / area_circle
 | 
			
		||||
	circular = False
 | 
			
		||||
	rectangular = False
 | 
			
		||||
	if boxiness > circleness:
 | 
			
		||||
		rectangular = True
 | 
			
		||||
		cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
	else:
 | 
			
		||||
		circular = True
 | 
			
		||||
		cv2.circle(orig,(int(x),int(y)),int(radius),(0,255,0),2)
 | 
			
		||||
 | 
			
		||||
	if pixelsPerMetric is None and circular is True:
 | 
			
		||||
		pixelsPerMetric = smaller(dA, dB) / args["width"]
 | 
			
		||||
	#cv2.imshow("Screw Length Detection", orig)
 | 
			
		||||
	#cv2.waitKey(0)
 | 
			
		||||
	# order the points in the contour such that they appear
 | 
			
		||||
	# in top-left, top-right, bottom-right, and bottom-left
 | 
			
		||||
	# order, then draw the outline of the rotated bounding
 | 
			
		||||
	# box
 | 
			
		||||
	
 | 
			
		||||
	#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	# if the pixels per metric has not been initialized, then
 | 
			
		||||
	# compute it as the ratio of pixels to supplied metric
 | 
			
		||||
	# (in this case, inches)
 | 
			
		||||
    # compute the size of the object
 | 
			
		||||
 | 
			
		||||
orig = image.copy()
 | 
			
		||||
# loop over the contours individually
 | 
			
		||||
for c in cnts:
 | 
			
		||||
	num += 1
 | 
			
		||||
@@ -82,7 +157,7 @@ for c in cnts:
 | 
			
		||||
	if cv2.contourArea(c) < 100:
 | 
			
		||||
		continue
 | 
			
		||||
	# compute the rotated bounding box of the contour
 | 
			
		||||
	orig = image.copy()
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
	box = cv2.minAreaRect(c)
 | 
			
		||||
	box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
@@ -93,7 +168,6 @@ for c in cnts:
 | 
			
		||||
	# order, then draw the outline of the rotated bounding
 | 
			
		||||
	# box
 | 
			
		||||
	box = perspective.order_points(box)
 | 
			
		||||
	cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
 | 
			
		||||
	# loop over the original points and draw them
 | 
			
		||||
	#for (x, y) in box:
 | 
			
		||||
@@ -118,38 +192,92 @@ for c in cnts:
 | 
			
		||||
	#cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
 | 
			
		||||
	# draw lines between the midpoints
 | 
			
		||||
	cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
 | 
			
		||||
		(255, 0, 255), 2)
 | 
			
		||||
	cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
 | 
			
		||||
		(255, 0, 255), 2)
 | 
			
		||||
    	# compute the Euclidean distance between the midpoints
 | 
			
		||||
    # compute the Euclidean distance between the midpoints
 | 
			
		||||
	dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0)))
 | 
			
		||||
	dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0)))
 | 
			
		||||
 | 
			
		||||
	# if the pixels per metric has not been initialized, then
 | 
			
		||||
	# compute it as the ratio of pixels to supplied metric
 | 
			
		||||
	# (in this case, inches)
 | 
			
		||||
	if pixelsPerMetric is None:
 | 
			
		||||
		pixelsPerMetric = dB / args["width"]
 | 
			
		||||
	#if pixelsPerMetric is None:
 | 
			
		||||
	#	pixelsPerMetric = dB / args["width"]
 | 
			
		||||
    # compute the size of the object
 | 
			
		||||
	dimA = dA / pixelsPerMetric
 | 
			
		||||
	dimB = dB / pixelsPerMetric
 | 
			
		||||
	
 | 
			
		||||
	if num == num:
 | 
			
		||||
		iteml = larger(dimA, dimB)
 | 
			
		||||
		print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
		iteml = sizeVexScrew(iteml)
 | 
			
		||||
		print("Rounded Length: " + str(iteml))
 | 
			
		||||
	# draw the object sizes on the image
 | 
			
		||||
	if num == selected or args2.show:
 | 
			
		||||
		area_box = dA * dB
 | 
			
		||||
		(x,y),radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
		area_contour = cv2.contourArea(c)
 | 
			
		||||
		area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
		boxiness = area_contour / area_box
 | 
			
		||||
		circleness = area_contour / area_circle
 | 
			
		||||
		circular = False
 | 
			
		||||
		rectangular = False
 | 
			
		||||
		if boxiness > circleness:
 | 
			
		||||
			rectangular = True
 | 
			
		||||
			cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
		else:
 | 
			
		||||
			circular = True
 | 
			
		||||
			cv2.circle(orig,(int(x),int(y)),int(radius),(0,255,0),2)
 | 
			
		||||
		
 | 
			
		||||
		
 | 
			
		||||
		objtype = "Unknown"
 | 
			
		||||
		itemw = larger(dimA, dimB)
 | 
			
		||||
		itemwr = itemw
 | 
			
		||||
		itemwr *= 8
 | 
			
		||||
		itemwr = round(itemwr)
 | 
			
		||||
		itemwr /= 8
 | 
			
		||||
 | 
			
		||||
		itemh = smaller(dimA, dimB)
 | 
			
		||||
		itemhr = itemh
 | 
			
		||||
		itemhr *= 16
 | 
			
		||||
		itemhr = round(itemhr)
 | 
			
		||||
		itemhr /= 16
 | 
			
		||||
		if circular and itemwr == 0.75:
 | 
			
		||||
			objtype = "Penny"
 | 
			
		||||
			iteml = 0
 | 
			
		||||
		else:
 | 
			
		||||
			epsilon = 4#0.05*cv2.arcLength(c,True)
 | 
			
		||||
			#print(str(epsilon))
 | 
			
		||||
			approx = cv2.approxPolyDP(c,epsilon,True)
 | 
			
		||||
			cv2.drawContours(orig, (approx.astype("int")), -1, (255, 0, 0), 8)
 | 
			
		||||
			if not cv2.isContourConvex(approx):
 | 
			
		||||
				objtype = "Screw"
 | 
			
		||||
				iteml = larger(dimA, dimB)
 | 
			
		||||
				#print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
				iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
 | 
			
		||||
				#print("Rounded Length: " + str(iteml))
 | 
			
		||||
			else:
 | 
			
		||||
				if itemhr == 0.3125:
 | 
			
		||||
					objtype = "Standoff"
 | 
			
		||||
					iteml = sizeStandoff(radius * 2 / pixelsPerMetric)
 | 
			
		||||
				if itemhr == 0.1875:
 | 
			
		||||
					objtype = "Axle"
 | 
			
		||||
					iteml = radius * 2 / pixelsPerMetric
 | 
			
		||||
				
 | 
			
		||||
		print(str(iteml))
 | 
			
		||||
		# draw the object sizes on the image
 | 
			
		||||
		if args2.show:
 | 
			
		||||
			cv2.putText(orig, "{:.5f}in".format(larger(dimA, dimB)),
 | 
			
		||||
			#cv2.putText(orig, "{:.5f}in".format(itemhr),
 | 
			
		||||
			#	(int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
			#	0.65, (255, 255, 255), 2)
 | 
			
		||||
			cv2.putText(orig, str(objtype),
 | 
			
		||||
				(int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
				0.65, (255, 255, 255), 2)
 | 
			
		||||
			if num > 1:
 | 
			
		||||
				cv2.putText(orig, "{:.3f}in screw".format(iteml), # print screw length
 | 
			
		||||
			if objtype == "Screw":
 | 
			
		||||
				cv2.putText(orig, str(iteml) + "in thread", # print screw length
 | 
			
		||||
					(int(trbrX + 20), int(trbrY + 20)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
					0.65, (255, 255, 255), 2)
 | 
			
		||||
			if objtype == "Standoff":
 | 
			
		||||
				cv2.putText(orig, str(iteml) + "in", # print standoff length
 | 
			
		||||
					(int(trbrX + 20), int(trbrY + 20)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
					0.65, (255, 255, 255), 2)
 | 
			
		||||
			if objtype == "Axle":
 | 
			
		||||
				cv2.putText(orig, "{:.2f}in".format(iteml), # print axle length
 | 
			
		||||
					(int(trbrX + 20), int(trbrY + 20)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
					0.65, (255, 255, 255), 2)
 | 
			
		||||
 
 | 
			
		||||
	# show the output image
 | 
			
		||||
			cv2.imshow("Screw Length Detection", orig)
 | 
			
		||||
			cv2.imshow("Item Sorter", orig)
 | 
			
		||||
			cv2.waitKey(0)
 | 
			
		||||
		Reference in New Issue
	
	Block a user