output item list and scan
This commit is contained in:
		
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										265
									
								
								detect.py
									
									
									
									
									
								
							
							
						
						
									
										265
									
								
								detect.py
									
									
									
									
									
								
							@@ -76,13 +76,13 @@ ap.add_argument("-n", "--number", type=int, required=False,
 | 
			
		||||
    args = vars(ap.parse_args())
 | 
			
		||||
    args2 = ap.parse_args()"""
 | 
			
		||||
def detect(calibration_width, img_file, show, quick):
 | 
			
		||||
    selected = 2
 | 
			
		||||
    list = []
 | 
			
		||||
    #if type(args["number"]) == type(selected):
 | 
			
		||||
    #    selected = args["number"]
 | 
			
		||||
 | 
			
		||||
    # load the image, convert it to grayscale, and blur it slightly
 | 
			
		||||
    image = None
 | 
			
		||||
    print(str(type(img_file)))
 | 
			
		||||
    #print(str(type(img_file)))
 | 
			
		||||
    if str(type(img_file)) == "<class 'numpy.ndarray'>":
 | 
			
		||||
        image = img_file.copy()
 | 
			
		||||
    else:
 | 
			
		||||
@@ -91,7 +91,7 @@ def detect(calibration_width, img_file, show, quick):
 | 
			
		||||
    #image = img_file.copy()
 | 
			
		||||
    #image = cv2.resize(image, (int(image.shape[1]*1), int(image.shape[0]*1)))
 | 
			
		||||
    image = cv2.resize(image, (1000, int(
 | 
			
		||||
        image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
 | 
			
		||||
                       image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
 | 
			
		||||
 | 
			
		||||
    if show and not quick:
 | 
			
		||||
        cv2.namedWindow("Item Sorter")
 | 
			
		||||
@@ -232,139 +232,134 @@ def detect(calibration_width, img_file, show, quick):
 | 
			
		||||
        dimA = dA / pixelsPerMetric
 | 
			
		||||
        dimB = dB / pixelsPerMetric
 | 
			
		||||
 | 
			
		||||
        if num == num or show:
 | 
			
		||||
            area_box = dA * dB
 | 
			
		||||
            (x, y), radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
            area_contour = cv2.contourArea(c)
 | 
			
		||||
            area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
            boxiness = area_contour / area_box
 | 
			
		||||
            circleness = area_contour / area_circle
 | 
			
		||||
            circular = False
 | 
			
		||||
            rectangular = False
 | 
			
		||||
            if boxiness > circleness:
 | 
			
		||||
                rectangular = True
 | 
			
		||||
                #cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
        # Item detection
 | 
			
		||||
        area_box = dA * dB
 | 
			
		||||
        (x, y), radius = cv2.minEnclosingCircle(c)
 | 
			
		||||
        area_contour = cv2.contourArea(c)
 | 
			
		||||
        area_circle = math.pi * pow(radius, 2)
 | 
			
		||||
        boxiness = area_contour / area_box
 | 
			
		||||
        circleness = area_contour / area_circle
 | 
			
		||||
        circular = False
 | 
			
		||||
        rectangular = False
 | 
			
		||||
        if boxiness > circleness:
 | 
			
		||||
            rectangular = True
 | 
			
		||||
            #cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
        else:
 | 
			
		||||
            circular = True
 | 
			
		||||
            cv2.circle(orig, (int(x), int(y)), int(radius), (255, 0, 0), 2)
 | 
			
		||||
        objtype = "Unknown"
 | 
			
		||||
        itemw = larger(dimA, dimB)
 | 
			
		||||
        itemwr = itemw
 | 
			
		||||
        itemwr *= 8
 | 
			
		||||
        itemwr = round(itemwr)
 | 
			
		||||
        itemwr /= 8
 | 
			
		||||
        itemh = smaller(dimA, dimB)
 | 
			
		||||
        itemhr = itemh
 | 
			
		||||
        itemhr *= 16
 | 
			
		||||
        itemhr = round(itemhr)
 | 
			
		||||
        itemhr /= 16
 | 
			
		||||
        if circular and itemwr == 0.75:
 | 
			
		||||
            objtype = "Penny"
 | 
			
		||||
            iteml = 0
 | 
			
		||||
        else:
 | 
			
		||||
            if circular and near(radius * 2 / pixelsPerMetric, 0.38, 0.03):
 | 
			
		||||
                # Keps nut or spacer
 | 
			
		||||
                objtype = "Spacer"
 | 
			
		||||
                mask = np.zeros(gray.shape, np.uint8)
 | 
			
		||||
                cv2.drawContours(mask, [c], 0, 255, -1)
 | 
			
		||||
                #pixelpoints = np.transpose(np.nonzero(mask))
 | 
			
		||||
                hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
 | 
			
		||||
                mean_val = cv2.mean(hsv, mask=mask)
 | 
			
		||||
                #print(str(mean_val[0]))
 | 
			
		||||
                if near(mean_val[0], 47, 5) and near(mean_val[1], 70, 5) and near(mean_val[2], 78, 5):
 | 
			
		||||
                    objtype = "Keps Nut"
 | 
			
		||||
            if circular and near(radius / pixelsPerMetric, 0.23, 0.02):
 | 
			
		||||
                objtype = "Washer"
 | 
			
		||||
            epsilon = 3  # 0.02*cv2.arcLength(c,True)
 | 
			
		||||
            # print(str(epsilon))
 | 
			
		||||
            approx = cv2.approxPolyDP(c, epsilon, True)
 | 
			
		||||
            hull = cv2.convexHull(approx, returnPoints=False)
 | 
			
		||||
            hull2 = cv2.convexHull(c)
 | 
			
		||||
            defects = cv2.convexityDefects(c, hull)
 | 
			
		||||
            #print(str(defects.size) + " match")
 | 
			
		||||
            cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
 | 
			
		||||
            cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
 | 
			
		||||
            convexness = area_contour / cv2.contourArea(hull2)
 | 
			
		||||
            #print(str(convexness) + " % fill")
 | 
			
		||||
            # if not cv2.isContourConvex(approx):
 | 
			
		||||
            # if cv2.matchShapes(hull, c, 1, 0.0) > 1:
 | 
			
		||||
            if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
 | 
			
		||||
                objtype = "Screw"
 | 
			
		||||
                iteml = larger(dimA, dimB)
 | 
			
		||||
                #print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
                iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
 | 
			
		||||
                #print("Rounded Length: " + str(iteml))
 | 
			
		||||
            else:
 | 
			
		||||
                circular = True
 | 
			
		||||
                cv2.circle(orig, (int(x), int(y)), int(radius), (255, 0, 0), 2)
 | 
			
		||||
 | 
			
		||||
            objtype = "Unknown"
 | 
			
		||||
            itemw = larger(dimA, dimB)
 | 
			
		||||
            itemwr = itemw
 | 
			
		||||
            itemwr *= 8
 | 
			
		||||
            itemwr = round(itemwr)
 | 
			
		||||
            itemwr /= 8
 | 
			
		||||
 | 
			
		||||
            itemh = smaller(dimA, dimB)
 | 
			
		||||
            itemhr = itemh
 | 
			
		||||
            itemhr *= 16
 | 
			
		||||
            itemhr = round(itemhr)
 | 
			
		||||
            itemhr /= 16
 | 
			
		||||
            if circular and itemwr == 0.75:
 | 
			
		||||
                objtype = "Penny"
 | 
			
		||||
                iteml = 0
 | 
			
		||||
            else:
 | 
			
		||||
                if circular and near(radius * 2 / pixelsPerMetric, 0.38, 0.03):
 | 
			
		||||
                    # Keps nut or spacer
 | 
			
		||||
                    objtype = "Spacer"
 | 
			
		||||
                    mask = np.zeros(gray.shape, np.uint8)
 | 
			
		||||
                    cv2.drawContours(mask, [c], 0, 255, -1)
 | 
			
		||||
                    #pixelpoints = np.transpose(np.nonzero(mask))
 | 
			
		||||
                    hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
 | 
			
		||||
                    mean_val = cv2.mean(hsv, mask=mask)
 | 
			
		||||
                    #print(str(mean_val[0]))
 | 
			
		||||
                    if near(mean_val[0], 47, 5) and near(mean_val[1], 70, 5) and near(mean_val[2], 78, 5):
 | 
			
		||||
                        objtype = "Keps Nut"
 | 
			
		||||
                if circular and near(radius / pixelsPerMetric, 0.23, 0.02):
 | 
			
		||||
                    objtype = "Washer"
 | 
			
		||||
                epsilon = 3  # 0.02*cv2.arcLength(c,True)
 | 
			
		||||
                # print(str(epsilon))
 | 
			
		||||
                approx = cv2.approxPolyDP(c, epsilon, True)
 | 
			
		||||
                hull = cv2.convexHull(approx, returnPoints=False)
 | 
			
		||||
                hull2 = cv2.convexHull(c)
 | 
			
		||||
                defects = cv2.convexityDefects(c, hull)
 | 
			
		||||
                #print(str(defects.size) + " match")
 | 
			
		||||
                cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
 | 
			
		||||
                cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
 | 
			
		||||
                convexness = area_contour / cv2.contourArea(hull2)
 | 
			
		||||
                #print(str(convexness) + " % fill")
 | 
			
		||||
                # if not cv2.isContourConvex(approx):
 | 
			
		||||
                # if cv2.matchShapes(hull, c, 1, 0.0) > 1:
 | 
			
		||||
                if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
 | 
			
		||||
                    objtype = "Screw"
 | 
			
		||||
                    iteml = larger(dimA, dimB)
 | 
			
		||||
                    #print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
                    iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
 | 
			
		||||
                    #print("Rounded Length: " + str(iteml))
 | 
			
		||||
                else:
 | 
			
		||||
                    if itemhr == 0.3125 and rectangular:
 | 
			
		||||
                        objtype = "Standoff"
 | 
			
		||||
                        iteml = sizeStandoff(itemw)
 | 
			
		||||
 | 
			
		||||
                    if itemhr == 0.1875 and rectangular:
 | 
			
		||||
                        objtype = "Axle"
 | 
			
		||||
                        iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
 | 
			
		||||
 | 
			
		||||
            rows, cols = orig.shape[:2]
 | 
			
		||||
            [vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
 | 
			
		||||
            lefty = int((-xx*vy/vx) + yy)
 | 
			
		||||
            righty = int(((cols-xx)*vy/vx)+yy)
 | 
			
		||||
            # cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
 | 
			
		||||
            slope = (lefty - righty) / (1 - cols)
 | 
			
		||||
            angle = math.atan(slope)
 | 
			
		||||
            xpos = x - math.cos(angle) * radius
 | 
			
		||||
            ypos = y - math.sin(angle) * radius
 | 
			
		||||
            xpos2 = x + math.cos(angle) * radius
 | 
			
		||||
            ypos2 = y + math.sin(angle) * radius
 | 
			
		||||
            if xpos > xpos2:
 | 
			
		||||
                swap(xpos, xpos2)
 | 
			
		||||
                swap(ypos, ypos2)
 | 
			
		||||
            if rectangular:
 | 
			
		||||
                cv2.line(orig, (int(xpos), int(ypos)),
 | 
			
		||||
                         (int(xpos2), int(ypos2)), (255, 127, 0), 2)
 | 
			
		||||
            # print(str(iteml))
 | 
			
		||||
            # draw the object sizes on the image
 | 
			
		||||
            if show or True:
 | 
			
		||||
                # cv2.putText(orig, "{:.5f}in".format(itemhr),
 | 
			
		||||
                #	(int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                #	0.65, (255, 255, 255), 2)
 | 
			
		||||
                if circular:
 | 
			
		||||
                    cv2.putText(orig, str(objtype),
 | 
			
		||||
                                (int(x - 25), int(y + radius + 20)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.6, (50, 50, 220), 2)
 | 
			
		||||
                else:
 | 
			
		||||
                    cv2.putText(orig, str(objtype),
 | 
			
		||||
                                (int(xpos2 + 10), int(ypos2 + 20)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.6, (50, 50, 220), 2)
 | 
			
		||||
                output = ""
 | 
			
		||||
                objname = objtype;
 | 
			
		||||
                if objtype == "Unknown":
 | 
			
		||||
                    output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
 | 
			
		||||
                if objtype == "Screw" or objtype == "Standoff":
 | 
			
		||||
                    output = str(iteml) + "in"
 | 
			
		||||
                    objname += str(iteml)
 | 
			
		||||
                if objtype == "Axle":
 | 
			
		||||
                    output = "{:.2f}in".format(iteml)
 | 
			
		||||
                    objname += str(itemwr)
 | 
			
		||||
                print(objname)
 | 
			
		||||
                if circular:
 | 
			
		||||
                    cv2.putText(orig, output,  # print data
 | 
			
		||||
                                (int(x - 25), int(y + radius + 40)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.5, (50, 50, 220), 1)
 | 
			
		||||
                else:
 | 
			
		||||
                    cv2.putText(orig, output,  # print data
 | 
			
		||||
                                (int(xpos2 + 10), int(ypos2 + 40)
 | 
			
		||||
                                 ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                                0.5, (50, 50, 220), 1)
 | 
			
		||||
 | 
			
		||||
        # show the output image
 | 
			
		||||
                if show:
 | 
			
		||||
                    cv2.imshow("Item Sorter", orig)
 | 
			
		||||
                #cv2.waitKey(1)
 | 
			
		||||
                if itemhr == 0.3125 and rectangular:
 | 
			
		||||
                    objtype = "Standoff"
 | 
			
		||||
                    iteml = sizeStandoff(itemw)
 | 
			
		||||
                if itemhr == 0.1875 and rectangular:
 | 
			
		||||
                    objtype = "Axle"
 | 
			
		||||
                    iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
 | 
			
		||||
        rows, cols = orig.shape[:2]
 | 
			
		||||
        [vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
 | 
			
		||||
        lefty = int((-xx*vy/vx) + yy)
 | 
			
		||||
        righty = int(((cols-xx)*vy/vx)+yy)
 | 
			
		||||
        # cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
 | 
			
		||||
        slope = (lefty - righty) / (1 - cols)
 | 
			
		||||
        angle = math.atan(slope)
 | 
			
		||||
        xpos = x - math.cos(angle) * radius
 | 
			
		||||
        ypos = y - math.sin(angle) * radius
 | 
			
		||||
        xpos2 = x + math.cos(angle) * radius
 | 
			
		||||
        ypos2 = y + math.sin(angle) * radius
 | 
			
		||||
        if xpos > xpos2:
 | 
			
		||||
            swap(xpos, xpos2)
 | 
			
		||||
            swap(ypos, ypos2)
 | 
			
		||||
        if rectangular:
 | 
			
		||||
            cv2.line(orig, (int(xpos), int(ypos)),
 | 
			
		||||
                     (int(xpos2), int(ypos2)), (255, 127, 0), 2)
 | 
			
		||||
        # print(str(iteml))
 | 
			
		||||
        # draw the object sizes on the image
 | 
			
		||||
        # cv2.putText(orig, "{:.5f}in".format(itemhr),
 | 
			
		||||
        #	(int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
        #	0.65, (255, 255, 255), 2)
 | 
			
		||||
        if circular:
 | 
			
		||||
            cv2.putText(orig, str(objtype),
 | 
			
		||||
                        (int(x - 25), int(y + radius + 20)
 | 
			
		||||
                         ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                        0.6, (50, 50, 220), 2)
 | 
			
		||||
        else:
 | 
			
		||||
            cv2.putText(orig, str(objtype),
 | 
			
		||||
                        (int(xpos2 + 10), int(ypos2 + 20)
 | 
			
		||||
                         ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                        0.6, (50, 50, 220), 2)
 | 
			
		||||
        output = ""
 | 
			
		||||
        objname = objtype;
 | 
			
		||||
        if objtype == "Unknown":
 | 
			
		||||
            output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
 | 
			
		||||
        if objtype == "Screw" or objtype == "Standoff":
 | 
			
		||||
            output = str(iteml) + "in"
 | 
			
		||||
            objname += str(iteml)
 | 
			
		||||
        if objtype == "Axle":
 | 
			
		||||
            output = "{:.2f}in".format(iteml)
 | 
			
		||||
            objname += str(itemwr)
 | 
			
		||||
        #print(objname)
 | 
			
		||||
        list.append(objname)
 | 
			
		||||
        if circular:
 | 
			
		||||
            cv2.putText(orig, output,  # print data
 | 
			
		||||
                        (int(x - 25), int(y + radius + 40)
 | 
			
		||||
                         ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                        0.5, (50, 50, 220), 1)
 | 
			
		||||
        else:
 | 
			
		||||
            cv2.putText(orig, output,  # print data
 | 
			
		||||
                        (int(xpos2 + 10), int(ypos2 + 40)
 | 
			
		||||
                         ), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                        0.5, (50, 50, 220), 1)
 | 
			
		||||
    # show the output image
 | 
			
		||||
        if show and not quick:
 | 
			
		||||
            cv2.imshow("Item Sorter", orig)
 | 
			
		||||
            #cv2.waitKey(1)
 | 
			
		||||
    if quick:
 | 
			
		||||
        return orig
 | 
			
		||||
        return (list, orig)
 | 
			
		||||
    else:
 | 
			
		||||
        cv2.waitKey(0)
 | 
			
		||||
 
 | 
			
		||||
@@ -5,14 +5,28 @@ from imutils.video import FPS
 | 
			
		||||
calibration_width = 0.75
 | 
			
		||||
image = "img7.jpg"
 | 
			
		||||
images = ("img.jpg", "img2.jpg", "img3.jpg", "img4.jpg", "img5.jpg", "img6.jpg", "img7.jpg", "img8.jpg")
 | 
			
		||||
#images = ("img.jpg", "img2.jpg")
 | 
			
		||||
video = False
 | 
			
		||||
def go():
 | 
			
		||||
    for file in images:
 | 
			
		||||
        detect.detect(calibration_width, file, True, False)
 | 
			
		||||
        items,output = detect.detect(calibration_width, file, True, True)
 | 
			
		||||
        print(str(items))
 | 
			
		||||
        if "Penny" in items:
 | 
			
		||||
            items.remove("Penny")
 | 
			
		||||
            itema = items[0]
 | 
			
		||||
            valid = True
 | 
			
		||||
            for item in items:
 | 
			
		||||
                if item != itema:
 | 
			
		||||
                    print("Too many items!")
 | 
			
		||||
                    valid = False
 | 
			
		||||
                    break
 | 
			
		||||
            if valid:
 | 
			
		||||
                print("Found " + itema)
 | 
			
		||||
 | 
			
		||||
if not video:
 | 
			
		||||
	elapsed_time = timeit.timeit(go, number=1)/1
 | 
			
		||||
	print(elapsed_time)
 | 
			
		||||
 | 
			
		||||
else :
 | 
			
		||||
    #tcp capture = cv2.VideoCapture('udpsrc port=5001  ! gdpdepay !  rtph264depay ! avdec_h264 ! videoconvert ! videorate ! video/x-raw,framerate=5/1 ! appsink', cv2.CAP_GSTREAMER)
 | 
			
		||||
    capture = cv2.VideoCapture('udpsrc port=9000 caps="application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264" ! rtph264depay ! avdec_h264 ! videoconvert ! appsink sync=false', cv2.CAP_GSTREAMER)
 | 
			
		||||
@@ -32,7 +46,8 @@ else :
 | 
			
		||||
        #print('frame')
 | 
			
		||||
        if x > 1:
 | 
			
		||||
            ret,frame = capture.retrieve()
 | 
			
		||||
            cv2.imshow('Item Sorter', detect.detect(calibration_width, frame, True, True))
 | 
			
		||||
            list,output = detect.detect(calibration_width, frame, True, True)
 | 
			
		||||
            cv2.imshow('Item Sorter', output)
 | 
			
		||||
            x = 0
 | 
			
		||||
        if cv2.waitKey(1)&0xFF == ord('q'):
 | 
			
		||||
            break
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user