added ultrasonic code
This commit is contained in:
parent
450d3c3997
commit
40d8d6cb6e
240
main.c
240
main.c
@ -1,242 +1,4 @@
|
||||
#pragma config(I2C_Usage, I2C1, i2cSensors)
|
||||
#pragma config(Sensor, dgtl1, , sensorSONAR_inch)
|
||||
#pragma config(Sensor, dgtl3, , sensorSONAR_inch)
|
||||
#pragma config(Sensor, I2C_1, , sensorQuadEncoderOnI2CPort, , AutoAssign )
|
||||
#pragma config(Sensor, I2C_2, , sensorQuadEncoderOnI2CPort, , AutoAssign )
|
||||
#pragma config(Motor, port1, , tmotorVex393_HBridge, openLoop)
|
||||
#pragma config(Motor, port2, shoot, tmotorVex393_MC29, openLoop, reversed)
|
||||
#pragma config(Motor, port3, driveLB, tmotorVex393_MC29, openLoop, reversed, encoderPort, I2C_2)
|
||||
#pragma config(Motor, port4, driveLF, tmotorVex393_MC29, openLoop, reversed)
|
||||
#pragma config(Motor, port5, driveRB, tmotorVex393_MC29, openLoop, reversed, encoderPort, I2C_1)
|
||||
#pragma config(Motor, port6, driveRF, tmotorVex393_MC29, openLoop)
|
||||
#pragma config(Motor, port7, bintake, tmotorVex393_MC29, openLoop, reversed)
|
||||
#pragma config(Motor, port8, , tmotorVex393_MC29, openLoop)
|
||||
#pragma config(Motor, port9, , tmotorVex393_MC29, openLoop)
|
||||
#pragma config(Motor, port10, , tmotorVex393_HBridge, openLoop)
|
||||
//*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//
|
||||
|
||||
#pragma platform(VEX2)
|
||||
#pragma competitionControl(Competition)
|
||||
#include "Vex_Competition_Includes.c"
|
||||
|
||||
// Definitions here!
|
||||
|
||||
#define MAX_SPEED 127
|
||||
// Set motor maximum speed, this allows for tweaking the speed of the robot with one change.
|
||||
|
||||
#define MAX_AUTO_SPEED 100
|
||||
/* During the development of the autonomous portion of our code, we found that the robot
|
||||
would have issues turning and driving at MAX_SPEED causing it to turn too much, and
|
||||
not driving straight. After limiting the driving speed to 100, we found that the robot
|
||||
was able to drive more consistently.
|
||||
*/
|
||||
|
||||
#define STOP 0
|
||||
// Defines the value for when a motor is stopped.
|
||||
|
||||
#define DEADZONE 10
|
||||
/* Defines the deadzone of the VEX controller. With our controllers, a value of 10 allowed
|
||||
for the motors to completely lose power when the joystick is let go.
|
||||
*/
|
||||
|
||||
#define DRIVE_OFFSET 10
|
||||
/* Defines the offset used to correct curves while the robot is driving straight during the
|
||||
driveTiles(float numberOfTiles, bool direction) function.
|
||||
*/
|
||||
|
||||
#define TILE 1206
|
||||
/* Definition for Rotation points per tile.
|
||||
|
||||
Each tile is 23.4 inches wide.
|
||||
|
||||
|
||||
The exact radius of 4" omni wheels, using dial calipers: 2.075 inches
|
||||
|
||||
2 * pi * r is circumference of the wheel - 13.0376 inches
|
||||
|
||||
|
||||
There are 627.2 points in a revolution with the vex direct motor encoders - according to robotc
|
||||
developers: “The 2-wire 393 motor measures 627.2 counts per revolution of the output shaft in its
|
||||
default high-torque configuration and 392 counts per revolution of the output shaft in its
|
||||
modified high-speed configuration.”
|
||||
|
||||
|
||||
So if we do 1 revolution * distance / radius we get 627.2 * 23.4 / 13.0376 = 1206.
|
||||
When the integrated motor encoder reports a movement of 1206, that means the robot has moved 1 tile.
|
||||
*/
|
||||
|
||||
|
||||
// How much the wheels should spin in a 90 degree turn
|
||||
#define POINTS_PER_TURN 320
|
||||
/* Using trial and error, we found that our robot will make a 90 degree turn when the integrated motor
|
||||
encoders report a distance of 320 while spinning in place.
|
||||
*/
|
||||
|
||||
|
||||
// definitions for driveTiles()
|
||||
#define FORWARD true
|
||||
#define REVERSE false
|
||||
/* When the function driveTiles(float numberOfTiles, bool direction) is called, one of the explicit
|
||||
parameters is a boolean for direction, where true is forward, and false is reverse. Using these
|
||||
definitions in our code, it is clearer to us and readers as to what that parameter is for.
|
||||
*/
|
||||
|
||||
void stopDriving() {
|
||||
motor[driveLB] = STOP;
|
||||
motor[driveLF] = STOP;
|
||||
motor[driveRB] = STOP;
|
||||
motor[driveRF] = STOP;
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: All four driving motors will be stopped, stopping the robot’s movements immediately.
|
||||
|
||||
|
||||
|
||||
void clearEnc() { // Reset driving motor encoder values to 0
|
||||
nMotorEncoder[driveRB] = 0;
|
||||
nMotorEncoder[driveLB] = 0;
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: Resets the driving encoders to 0, for use in other autonomous functions.
|
||||
|
||||
|
||||
|
||||
void shootBall() {
|
||||
motor[shoot] = MAX_SPEED;
|
||||
wait(1.25); // Shooting takes 1.25 seconds
|
||||
motor[shoot] = STOP;
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: The 2 motors connected to the shoot port will turn on for 1.25 seconds, which is
|
||||
// precisely the amount of time needed for the motors to pull back and release the launcher.
|
||||
|
||||
|
||||
void turntoRight(float turns) {
|
||||
clearEnc();
|
||||
while(turns * POINTS_PER_TURN > nMotorEncoder[driveLB]){
|
||||
motor[driveLB] = MAX_AUTO_SPEED;
|
||||
motor[driveLF] = MAX_AUTO_SPEED;
|
||||
motor[driveRB] = -MAX_AUTO_SPEED;
|
||||
motor[driveRF] = -MAX_AUTO_SPEED;
|
||||
}
|
||||
stopDriving();
|
||||
}
|
||||
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the right.
|
||||
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can
|
||||
// specify decimal amounts to turns to allow for any angle of a turn.
|
||||
// Output: The robot will turn by (turns * 90) degrees to the right.
|
||||
|
||||
void turntoLeft(float turns) {
|
||||
clearEnc();
|
||||
while(turns * POINTS_PER_TURN > nMotorEncoder[driveRB]){
|
||||
motor[driveLB] = -MAX_AUTO_SPEED;
|
||||
motor[driveLF] = -MAX_AUTO_SPEED;
|
||||
motor[driveRB] = MAX_AUTO_SPEED;
|
||||
motor[driveRF] = MAX_AUTO_SPEED;
|
||||
}
|
||||
stopDriving();
|
||||
}
|
||||
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the left.
|
||||
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can
|
||||
// specify decimal amounts to turns to allow for any angle of a turn.
|
||||
// Output: The robot will turn by (turns * 90) degrees to the left.
|
||||
|
||||
|
||||
|
||||
void flipOn() {
|
||||
motor[bintake] = -MAX_SPEED;
|
||||
}
|
||||
void ballOff() {
|
||||
motor[bintake] = STOP;
|
||||
}
|
||||
void ballIn() {
|
||||
motor[bintake] = MAX_SPEED;
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: These three functions manage the ball lift and, conveniently, the same motors in reverse will
|
||||
// flip a cap. flipOn() will spin the motors in the direction needed to flip caps, ballIn() will spin the
|
||||
// motors in the direction needed to collect and pick up balls, and ballOff() will turn off the motors.
|
||||
|
||||
|
||||
void joystickDrive() {
|
||||
if(abs(vexRT[Ch3]) > DEADZONE) {
|
||||
motor[driveLB] = vexRT[Ch3];
|
||||
motor[driveLF] = vexRT[Ch3];
|
||||
}
|
||||
else {
|
||||
motor[driveLB] = STOP;
|
||||
motor[driveLF] = STOP;
|
||||
}
|
||||
if(abs(vexRT[Ch2]) > DEADZONE) {
|
||||
motor[driveRB] = vexRT[Ch2];
|
||||
motor[driveRF] = vexRT[Ch2];
|
||||
}
|
||||
else {
|
||||
motor[driveRB] = STOP;
|
||||
motor[driveRF] = STOP;
|
||||
}
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: The robot will drive based on the values read from the 2 joysticks on the controller. However,
|
||||
// if the joystick’s value is inside the DEADZONE (10) then the robot will not move. This prevents wasted
|
||||
// battery and motor overheating when the robot is not supposed to be moving. This is necessary because when
|
||||
// the joysticks are let go they don’t read a value of exactly zero, it’s usually off by a few.
|
||||
|
||||
|
||||
void buttonChecks() {
|
||||
if (vexRT[Btn5U] == 1) {
|
||||
ballIn();
|
||||
}
|
||||
else if (vexRT[Btn5D] == 1) {
|
||||
flipOn();
|
||||
}
|
||||
else {
|
||||
ballOff();
|
||||
}
|
||||
if (vexRT[Btn8D] == 1) {
|
||||
shootBall();
|
||||
} // No need for reverse on the ball launcher!
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: When the corresponding buttons are pressed, various features will be activated, such as the cap
|
||||
// flipper or the ball launcher. When the buttons are released, the action is stopped.
|
||||
|
||||
|
||||
void pre_auton() {
|
||||
/* Set bStopTasksBetweenModes to false if you want to keep user created tasks
|
||||
running between Autonomous and Driver controlled modes. You will need to
|
||||
manage all user created tasks if set to false. */
|
||||
bStopTasksBetweenModes = true;
|
||||
}
|
||||
// Auto-generated ROBOTC autonomous function
|
||||
|
||||
void driveTiles(float numberOfTiles, bool direction) {
|
||||
// when direction is true, move forward, otherwise go in reverse
|
||||
clearEnc();
|
||||
while(direction == FORWARD && numberOfTiles * TILE - 200 > nMotorEncoder[driveRB]) {
|
||||
if(abs(nMotorEncoder[driveRB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) {
|
||||
motor[driveLB] = MAX_AUTO_SPEED;
|
||||
motor[driveLF] = MAX_AUTO_SPEED;
|
||||
motor[driveRB] = MAX_AUTO_SPEED - DRIVE_OFFSET;
|
||||
motor[driveRF] = MAX_AUTO_SPEED - DRIVE_OFFSET;
|
||||
}
|
||||
if(abs(nMotorEncoder[driveLB]) - DRIVE_OFFSET > nMotorEncoder[driveRB]) {
|
||||
motor[driveLB] = MAX_AUTO_SPEED - DRIVE_OFFSET;
|
||||
motor[driveLF] = MAX_AUTO_SPEED - DRIVE_OFFSET;
|
||||
motor[driveRB] = MAX_AUTO_SPEED;
|
||||
motor[driveRF] = MAX_AUTO_SPEED;
|
||||
} else {
|
||||
motor[driveLB] = MAX_AUTO_SPEED;
|
||||
motor[driveLF] = MAX_AUTO_SPEED;
|
||||
motor[driveRB] = MAX_AUTO_SPEED;
|
||||
motor[driveRF] = MAX_AUTO_SPEED;
|
||||
}
|
||||
}
|
||||
while(direction == REVERSE && numberOfTiles * TILE - 200 > -nMotorEncoder[driveRB]) {
|
||||
if(abs(nMotorEncoder[driveRB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) {
|
||||
motor[driveLB] = -MAX_AUTO_SPEED;
|
||||
motor[driveLF] = -MAX_AUTO_SPEED;
|
||||
motor[driveRB] = -MAX_AUTO_SPEED + DRIVE_OFFSET;
|
||||
motor[driveRF] = -MAX_AUTO_SPEED + DRIVE_OFFSET;
|
||||
}
|
||||
if(abs(nMotorEncoder[driveLB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) {
|
||||
@ -289,7 +51,7 @@ task autonomous() {
|
||||
//driveTiles(0.2, REVERSE);
|
||||
wait(3);
|
||||
ballOff();
|
||||
shootBall();
|
||||
shootBall();
|
||||
turntoRight(0.75);
|
||||
driveTiles(1.9, REVERSE);
|
||||
turntoLeft(1);
|
||||
|
Loading…
x
Reference in New Issue
Block a user