added ultrasonic code

master
Cole Deck 6 years ago
parent 450d3c3997
commit 40d8d6cb6e

240
main.c

@ -1,242 +1,4 @@
#pragma config(I2C_Usage, I2C1, i2cSensors)
#pragma config(Sensor, dgtl1, , sensorSONAR_inch)
#pragma config(Sensor, dgtl3, , sensorSONAR_inch)
#pragma config(Sensor, I2C_1, , sensorQuadEncoderOnI2CPort, , AutoAssign )
#pragma config(Sensor, I2C_2, , sensorQuadEncoderOnI2CPort, , AutoAssign )
#pragma config(Motor, port1, , tmotorVex393_HBridge, openLoop)
#pragma config(Motor, port2, shoot, tmotorVex393_MC29, openLoop, reversed)
#pragma config(Motor, port3, driveLB, tmotorVex393_MC29, openLoop, reversed, encoderPort, I2C_2)
#pragma config(Motor, port4, driveLF, tmotorVex393_MC29, openLoop, reversed)
#pragma config(Motor, port5, driveRB, tmotorVex393_MC29, openLoop, reversed, encoderPort, I2C_1)
#pragma config(Motor, port6, driveRF, tmotorVex393_MC29, openLoop)
#pragma config(Motor, port7, bintake, tmotorVex393_MC29, openLoop, reversed)
#pragma config(Motor, port8, , tmotorVex393_MC29, openLoop)
#pragma config(Motor, port9, , tmotorVex393_MC29, openLoop)
#pragma config(Motor, port10, , tmotorVex393_HBridge, openLoop)
//*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//
#pragma platform(VEX2)
#pragma competitionControl(Competition)
#include "Vex_Competition_Includes.c"
// Definitions here!
#define MAX_SPEED 127
// Set motor maximum speed, this allows for tweaking the speed of the robot with one change.
#define MAX_AUTO_SPEED 100
/* During the development of the autonomous portion of our code, we found that the robot
would have issues turning and driving at MAX_SPEED causing it to turn too much, and
not driving straight. After limiting the driving speed to 100, we found that the robot
was able to drive more consistently.
*/
#define STOP 0
// Defines the value for when a motor is stopped.
#define DEADZONE 10
/* Defines the deadzone of the VEX controller. With our controllers, a value of 10 allowed
for the motors to completely lose power when the joystick is let go.
*/
#define DRIVE_OFFSET 10
/* Defines the offset used to correct curves while the robot is driving straight during the
driveTiles(float numberOfTiles, bool direction) function.
*/
#define TILE 1206
/* Definition for Rotation points per tile.
Each tile is 23.4 inches wide.
The exact radius of 4" omni wheels, using dial calipers: 2.075 inches
2 * pi * r is circumference of the wheel - 13.0376 inches
There are 627.2 points in a revolution with the vex direct motor encoders - according to robotc
developers: The 2-wire 393 motor measures 627.2 counts per revolution of the output shaft in its
default high-torque configuration and 392 counts per revolution of the output shaft in its
modified high-speed configuration.
So if we do 1 revolution * distance / radius we get 627.2 * 23.4 / 13.0376 = 1206.
When the integrated motor encoder reports a movement of 1206, that means the robot has moved 1 tile.
*/
// How much the wheels should spin in a 90 degree turn
#define POINTS_PER_TURN 320
/* Using trial and error, we found that our robot will make a 90 degree turn when the integrated motor
encoders report a distance of 320 while spinning in place.
*/
// definitions for driveTiles()
#define FORWARD true
#define REVERSE false
/* When the function driveTiles(float numberOfTiles, bool direction) is called, one of the explicit
parameters is a boolean for direction, where true is forward, and false is reverse. Using these
definitions in our code, it is clearer to us and readers as to what that parameter is for.
*/
void stopDriving() {
motor[driveLB] = STOP;
motor[driveLF] = STOP;
motor[driveRB] = STOP;
motor[driveRF] = STOP;
}
// Explicit Parameters: None
// Output: All four driving motors will be stopped, stopping the robots movements immediately.
void clearEnc() { // Reset driving motor encoder values to 0
nMotorEncoder[driveRB] = 0;
nMotorEncoder[driveLB] = 0;
}
// Explicit Parameters: None
// Output: Resets the driving encoders to 0, for use in other autonomous functions.
void shootBall() {
motor[shoot] = MAX_SPEED;
wait(1.25); // Shooting takes 1.25 seconds
motor[shoot] = STOP;
}
// Explicit Parameters: None
// Output: The 2 motors connected to the shoot port will turn on for 1.25 seconds, which is
// precisely the amount of time needed for the motors to pull back and release the launcher.
void turntoRight(float turns) {
clearEnc();
while(turns * POINTS_PER_TURN > nMotorEncoder[driveLB]){
motor[driveLB] = MAX_AUTO_SPEED;
motor[driveLF] = MAX_AUTO_SPEED;
motor[driveRB] = -MAX_AUTO_SPEED;
motor[driveRF] = -MAX_AUTO_SPEED;
}
stopDriving();
}
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the right.
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can
// specify decimal amounts to turns to allow for any angle of a turn.
// Output: The robot will turn by (turns * 90) degrees to the right.
void turntoLeft(float turns) {
clearEnc();
while(turns * POINTS_PER_TURN > nMotorEncoder[driveRB]){
motor[driveLB] = -MAX_AUTO_SPEED;
motor[driveLF] = -MAX_AUTO_SPEED;
motor[driveRB] = MAX_AUTO_SPEED;
motor[driveRF] = MAX_AUTO_SPEED;
}
stopDriving();
}
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the left.
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can
// specify decimal amounts to turns to allow for any angle of a turn.
// Output: The robot will turn by (turns * 90) degrees to the left.
void flipOn() {
motor[bintake] = -MAX_SPEED;
}
void ballOff() {
motor[bintake] = STOP;
}
void ballIn() {
motor[bintake] = MAX_SPEED;
}
// Explicit Parameters: None
// Output: These three functions manage the ball lift and, conveniently, the same motors in reverse will
// flip a cap. flipOn() will spin the motors in the direction needed to flip caps, ballIn() will spin the
// motors in the direction needed to collect and pick up balls, and ballOff() will turn off the motors.
void joystickDrive() {
if(abs(vexRT[Ch3]) > DEADZONE) {
motor[driveLB] = vexRT[Ch3];
motor[driveLF] = vexRT[Ch3];
}
else {
motor[driveLB] = STOP;
motor[driveLF] = STOP;
}
if(abs(vexRT[Ch2]) > DEADZONE) {
motor[driveRB] = vexRT[Ch2];
motor[driveRF] = vexRT[Ch2];
}
else {
motor[driveRB] = STOP;
motor[driveRF] = STOP;
}
}
// Explicit Parameters: None
// Output: The robot will drive based on the values read from the 2 joysticks on the controller. However,
// if the joysticks value is inside the DEADZONE (10) then the robot will not move. This prevents wasted
// battery and motor overheating when the robot is not supposed to be moving. This is necessary because when
// the joysticks are let go they dont read a value of exactly zero, its usually off by a few.
void buttonChecks() {
if (vexRT[Btn5U] == 1) {
ballIn();
}
else if (vexRT[Btn5D] == 1) {
flipOn();
}
else {
ballOff();
}
if (vexRT[Btn8D] == 1) {
shootBall();
} // No need for reverse on the ball launcher!
}
// Explicit Parameters: None
// Output: When the corresponding buttons are pressed, various features will be activated, such as the cap
// flipper or the ball launcher. When the buttons are released, the action is stopped.
void pre_auton() {
/* Set bStopTasksBetweenModes to false if you want to keep user created tasks
running between Autonomous and Driver controlled modes. You will need to
manage all user created tasks if set to false. */
bStopTasksBetweenModes = true;
}
// Auto-generated ROBOTC autonomous function
void driveTiles(float numberOfTiles, bool direction) {
// when direction is true, move forward, otherwise go in reverse
clearEnc();
while(direction == FORWARD && numberOfTiles * TILE - 200 > nMotorEncoder[driveRB]) {
if(abs(nMotorEncoder[driveRB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) {
motor[driveLB] = MAX_AUTO_SPEED;
motor[driveLF] = MAX_AUTO_SPEED;
motor[driveRB] = MAX_AUTO_SPEED - DRIVE_OFFSET;
motor[driveRF] = MAX_AUTO_SPEED - DRIVE_OFFSET;
}
if(abs(nMotorEncoder[driveLB]) - DRIVE_OFFSET > nMotorEncoder[driveRB]) {
motor[driveLB] = MAX_AUTO_SPEED - DRIVE_OFFSET;
motor[driveLF] = MAX_AUTO_SPEED - DRIVE_OFFSET;
motor[driveRB] = MAX_AUTO_SPEED;
motor[driveRF] = MAX_AUTO_SPEED;
} else {
motor[driveLB] = MAX_AUTO_SPEED;
motor[driveLF] = MAX_AUTO_SPEED;
motor[driveRB] = MAX_AUTO_SPEED;
motor[driveRF] = MAX_AUTO_SPEED;
}
}
while(direction == REVERSE && numberOfTiles * TILE - 200 > -nMotorEncoder[driveRB]) {
if(abs(nMotorEncoder[driveRB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) {
motor[driveLB] = -MAX_AUTO_SPEED;
motor[driveLF] = -MAX_AUTO_SPEED;
motor[driveRB] = -MAX_AUTO_SPEED + DRIVE_OFFSET;
motor[driveRF] = -MAX_AUTO_SPEED + DRIVE_OFFSET; motor[driveRF] = -MAX_AUTO_SPEED + DRIVE_OFFSET;
} }
if(abs(nMotorEncoder[driveLB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) { if(abs(nMotorEncoder[driveLB]) - DRIVE_OFFSET > nMotorEncoder[driveLB]) {
@ -289,7 +51,7 @@ task autonomous() {
//driveTiles(0.2, REVERSE); //driveTiles(0.2, REVERSE);
wait(3); wait(3);
ballOff(); ballOff();
shootBall(); shootBall();
turntoRight(0.75); turntoRight(0.75);
driveTiles(1.9, REVERSE); driveTiles(1.9, REVERSE);
turntoLeft(1); turntoLeft(1);

Loading…
Cancel
Save