add more comments
This commit is contained in:
parent
af343a8074
commit
db09576032
86
main.c
86
main.c
@ -38,7 +38,7 @@
|
||||
*/
|
||||
|
||||
#define DRIVE_OFFSET 10
|
||||
/* Defines the offset used to correct and curves while the robot is driving straight during the
|
||||
/* Defines the offset used to correct curves while the robot is driving straight during the
|
||||
driveTiles(float numberOfTiles, bool direction) function.
|
||||
*/
|
||||
|
||||
@ -119,11 +119,10 @@ void turntoRight(float turns) {
|
||||
}
|
||||
stopDriving();
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: These three functions manage the ball lift and, conveniently, the same motors in reverse
|
||||
// will flip a cap. flipOn() will spin the motors in the direction needed to flip caps, ballIn()
|
||||
// will spin the motors in the direction needed to collect and pick up balls, and ballOff() will turn off the motors.
|
||||
|
||||
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the right.
|
||||
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can
|
||||
// specify decimal amounts to turns to allow for any angle of a turn.
|
||||
// Output: The robot will turn by (turns * 90) degrees to the right.
|
||||
|
||||
void turntoLeft(float turns) {
|
||||
clearEnc();
|
||||
@ -135,6 +134,11 @@ void turntoLeft(float turns) {
|
||||
}
|
||||
stopDriving();
|
||||
}
|
||||
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the left.
|
||||
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can
|
||||
// specify decimal amounts to turns to allow for any angle of a turn.
|
||||
// Output: The robot will turn by (turns * 90) degrees to the left.
|
||||
|
||||
|
||||
|
||||
void flipOn() {
|
||||
@ -146,6 +150,11 @@ void ballOff() {
|
||||
void ballIn() {
|
||||
motor[bintake] = MAX_SPEED;
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: These three functions manage the ball lift and, conveniently, the same motors in reverse will
|
||||
// flip a cap. flipOn() will spin the motors in the direction needed to flip caps, ballIn() will spin the
|
||||
// motors in the direction needed to collect and pick up balls, and ballOff() will turn off the motors.
|
||||
|
||||
|
||||
void joystickDrive() {
|
||||
if(abs(vexRT[Ch3]) > DEADZONE) {
|
||||
@ -165,6 +174,12 @@ void joystickDrive() {
|
||||
motor[driveRF] = STOP;
|
||||
}
|
||||
}
|
||||
// Explicit Parameters: None
|
||||
// Output: The robot will drive based on the values read from the 2 joysticks on the controller. However,
|
||||
// if the joystick’s value is inside the DEADZONE (10) then the robot will not move. This prevents wasted
|
||||
// battery and motor overheating when the robot is not supposed to be moving. This is necessary because when
|
||||
// the joysticks are let go they don’t read a value of exactly zero, it’s usually off by a few.
|
||||
|
||||
|
||||
void buttonChecks() {
|
||||
if (vexRT[Btn5U] == 1) {
|
||||
@ -180,7 +195,9 @@ void buttonChecks() {
|
||||
shootBall();
|
||||
} // No need for reverse on the ball launcher!
|
||||
}
|
||||
|
||||
// Explicit Parameters: None
|
||||
// Output: When the corresponding buttons are pressed, various features will be activated, such as the cap
|
||||
// flipper or the ball launcher. When the buttons are released, the action is stopped.
|
||||
|
||||
|
||||
void pre_auton() {
|
||||
@ -189,6 +206,7 @@ void pre_auton() {
|
||||
manage all user created tasks if set to false. */
|
||||
bStopTasksBetweenModes = true;
|
||||
}
|
||||
// Auto-generated ROBOTC autonomous function
|
||||
|
||||
void driveTiles(float numberOfTiles, bool direction) {
|
||||
// when direction is true, move forward, otherwise go in reverse
|
||||
@ -233,7 +251,14 @@ void driveTiles(float numberOfTiles, bool direction) {
|
||||
}
|
||||
stopDriving();
|
||||
}
|
||||
|
||||
// Explicit Parameters: A floating point number numberOfTurns that represents the number of tiles that the
|
||||
// robot is to drive. Since it is a floating point number, we can move by half or any fraction movement.
|
||||
// There is also the boolean value direction that controls which way the robot is to move. true is for forward,
|
||||
// and false is for reverse.
|
||||
// Output: The robot will drive the specified amount of tiles, in the specified direction. If the robot is not driving
|
||||
// straight, the speeds of the left and right motors can be offset from each other to cancel out any slight drifts
|
||||
// to the left or right. We subtract 200 from the distance no matter what here, because the robot moves
|
||||
// that much after it is told to stop.
|
||||
|
||||
task autonomous() {
|
||||
turntoRight(0.03);
|
||||
@ -252,11 +277,10 @@ task autonomous() {
|
||||
turntoRight(1);
|
||||
driveTiles(0.6, REVERSE);
|
||||
driveTiles(2.1, FORWARD); // Flip the other cap without turning on the spinner
|
||||
flipOn();
|
||||
flipOn(); // So we can pick up the ball that's under it!
|
||||
driveTiles(0.5, FORWARD);
|
||||
ballIn();
|
||||
driveTiles(0.1, REVERSE);
|
||||
// So we can pick up the ball!
|
||||
wait(3);
|
||||
driveTiles(0.1, REVERSE);
|
||||
turntoLeft(1);
|
||||
@ -274,11 +298,45 @@ task autonomous() {
|
||||
turntoRight(1);
|
||||
driveTiles(0.25, REVERSE);
|
||||
driveTiles(3, FORWARD);
|
||||
}
|
||||
/*
|
||||
This is the autonomous task. Here’s the path of the robot, described in words instead of code:
|
||||
|
||||
}
|
||||
task usercontrol() { // In user control mode
|
||||
1. Start at the red tile closest to the flags.
|
||||
|
||||
2. Turn a tiny bit to the right to aim, and shoot the top flag with our preload.
|
||||
|
||||
3. Re-align ourselves and drive to hit the bottom flag.
|
||||
|
||||
4. Back up 1 tile, turn right, and back into the wall to align the robot.
|
||||
|
||||
5. Drive forward with the flipper turned on, and flip the cap from blue to red.
|
||||
|
||||
6. Back up, turn left, reverse 1 tile, turn right, back into the wall again to align ourselves.
|
||||
|
||||
7. Drive forward, push the cap off of the ball, turn of the flipper and flip the cap.
|
||||
|
||||
8. Run the motors to lift the ball up to the ball launcher. We wait a few seconds for the ball.
|
||||
|
||||
9. Turn to the left, wait a bit more, and shoot the top flag in the middle column of flags.
|
||||
|
||||
10. Turn right, back up to the starting tile, then turn left.
|
||||
|
||||
11. Reverse for 1 tile to be perpendicular with the platforms.
|
||||
|
||||
12. Turn to face the parking platforms, and reverse into the wall to align ourselves again.
|
||||
|
||||
13. Climb to the middle parking platform and stop.
|
||||
*/
|
||||
|
||||
|
||||
task usercontrol() {
|
||||
while (true) {
|
||||
joystickDrive(); // Joystick mapping function
|
||||
buttonChecks(); // Button mapping, for lift, ball launcher, etc.
|
||||
joystickDrive();
|
||||
buttonChecks();
|
||||
}
|
||||
}
|
||||
// When the driver is in control, this task runs. For the entire duration of the driver control period, we need
|
||||
// to be able to control the robot, so we put everything in a while loop. The task calls 2 previously mentioned
|
||||
// functions, joystickDrive() and buttonChecks().
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user