add more comments
This commit is contained in:
		
							
								
								
									
										110
									
								
								main.c
									
									
									
									
									
								
							
							
						
						
									
										110
									
								
								main.c
									
									
									
									
									
								
							@@ -38,7 +38,7 @@
 | 
			
		||||
*/  
 | 
			
		||||
 | 
			
		||||
#define DRIVE_OFFSET 10
 | 
			
		||||
/* Defines the offset used to correct and curves while the robot is driving straight during the 
 | 
			
		||||
/* Defines the offset used to correct curves while the robot is driving straight during the 
 | 
			
		||||
   driveTiles(float numberOfTiles, bool direction) function.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
@@ -119,11 +119,10 @@ void turntoRight(float turns) {
 | 
			
		||||
  }
 | 
			
		||||
  stopDriving();
 | 
			
		||||
}
 | 
			
		||||
// Explicit Parameters: None
 | 
			
		||||
// Output: These three functions manage the ball lift and, conveniently, the same motors in reverse 
 | 
			
		||||
// will flip a cap.  flipOn() will spin the motors in the direction needed to flip caps, ballIn() 
 | 
			
		||||
// will spin the motors in the direction needed to collect and pick up balls, and ballOff() will turn off the motors. 
 | 
			
		||||
 | 
			
		||||
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the right. 
 | 
			
		||||
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can 
 | 
			
		||||
// specify decimal amounts to turns to allow for any angle of a turn. 
 | 
			
		||||
// Output: The robot will turn by (turns * 90) degrees to the right.
 | 
			
		||||
 | 
			
		||||
void turntoLeft(float turns) {
 | 
			
		||||
  clearEnc();
 | 
			
		||||
@@ -135,6 +134,11 @@ void turntoLeft(float turns) {
 | 
			
		||||
  }
 | 
			
		||||
  stopDriving();
 | 
			
		||||
}
 | 
			
		||||
// Explicit Parameters: A floating point number turns will control how much the robot will turn to the left. 
 | 
			
		||||
// When turns is set to 1, the robot will turn exactly 90 degrees. Since it is a floating point number, we can 
 | 
			
		||||
// specify decimal amounts to turns to allow for any angle of a turn. 
 | 
			
		||||
// Output: The robot will turn by (turns * 90) degrees to the left.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void flipOn() {
 | 
			
		||||
@@ -146,6 +150,11 @@ void ballOff() {
 | 
			
		||||
void ballIn() {
 | 
			
		||||
  motor[bintake] = MAX_SPEED;
 | 
			
		||||
}
 | 
			
		||||
// Explicit Parameters: None
 | 
			
		||||
// Output: These three functions manage the ball lift and, conveniently, the same motors in reverse will
 | 
			
		||||
// flip a cap. flipOn() will spin the motors in the direction needed to flip caps, ballIn() will spin the 
 | 
			
		||||
// motors in the direction needed to collect and pick up balls, and ballOff() will turn off the motors. 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void joystickDrive() {
 | 
			
		||||
  if(abs(vexRT[Ch3]) > DEADZONE) {
 | 
			
		||||
@@ -165,6 +174,12 @@ void joystickDrive() {
 | 
			
		||||
    motor[driveRF] = STOP;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
// Explicit Parameters: None
 | 
			
		||||
// Output: The robot will drive based on the values read from the 2 joysticks on the controller. However, 
 | 
			
		||||
// if the joystick’s value is inside the DEADZONE (10) then the robot will not move. This prevents wasted
 | 
			
		||||
// battery and motor overheating when the robot is not supposed to be moving. This is necessary because when
 | 
			
		||||
// the joysticks are let go they don’t read a value of exactly zero, it’s usually off by a few. 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void buttonChecks() {
 | 
			
		||||
  if (vexRT[Btn5U] == 1) {
 | 
			
		||||
@@ -180,7 +195,9 @@ void buttonChecks() {
 | 
			
		||||
  	shootBall();
 | 
			
		||||
  } // No need for reverse on the ball launcher!
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Explicit Parameters: None
 | 
			
		||||
// Output: When the corresponding buttons are pressed, various features will be activated, such as the cap 
 | 
			
		||||
// flipper or the ball launcher. When the buttons are released, the action is stopped.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void pre_auton() {
 | 
			
		||||
@@ -189,6 +206,7 @@ void pre_auton() {
 | 
			
		||||
  manage all user created tasks if set to false. */
 | 
			
		||||
  bStopTasksBetweenModes = true;
 | 
			
		||||
}
 | 
			
		||||
// Auto-generated ROBOTC autonomous function
 | 
			
		||||
 | 
			
		||||
void driveTiles(float numberOfTiles, bool direction) {
 | 
			
		||||
    // when direction is true, move forward, otherwise go in reverse
 | 
			
		||||
@@ -233,13 +251,20 @@ void driveTiles(float numberOfTiles, bool direction) {
 | 
			
		||||
	}
 | 
			
		||||
	stopDriving();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Explicit Parameters: A floating point number numberOfTurns that represents the number of tiles that the 
 | 
			
		||||
// robot is to drive. Since it is a floating point number, we can move by half or any fraction movement. 
 | 
			
		||||
// There is also the boolean value direction that controls which way the robot is to move. true is for forward, 
 | 
			
		||||
// and false is for reverse. 
 | 
			
		||||
// Output: The robot will drive the specified amount of tiles, in the specified direction. If the robot is not driving 
 | 
			
		||||
// straight, the speeds of the left and right motors can be offset from each other to cancel out any slight drifts
 | 
			
		||||
// to the left or right. We subtract 200 from the distance no matter what here, because the robot moves 
 | 
			
		||||
// that much after it is told to stop. 
 | 
			
		||||
 | 
			
		||||
task autonomous() {
 | 
			
		||||
	turntoRight(0.03);
 | 
			
		||||
	shootBall();
 | 
			
		||||
	turntoLeft(0.03);
 | 
			
		||||
	driveTiles(2, FORWARD); // Move 2 forward to hit bottom flag
 | 
			
		||||
  turntoRight(0.03);
 | 
			
		||||
  shootBall();
 | 
			
		||||
  turntoLeft(0.03);
 | 
			
		||||
  driveTiles(2, FORWARD); // Move 2 forward to hit bottom flag
 | 
			
		||||
  driveTiles(1, REVERSE);
 | 
			
		||||
  turntoRight(1);
 | 
			
		||||
  driveTiles(0.5, REVERSE); // Drive 1/3 of a tile backwards to hit the wall and align ourselves!
 | 
			
		||||
@@ -252,11 +277,10 @@ task autonomous() {
 | 
			
		||||
  turntoRight(1);
 | 
			
		||||
  driveTiles(0.6, REVERSE);
 | 
			
		||||
  driveTiles(2.1, FORWARD); // Flip the other cap without turning on the spinner
 | 
			
		||||
  flipOn();
 | 
			
		||||
  flipOn();                 // So we can pick up the ball that's under it!
 | 
			
		||||
  driveTiles(0.5, FORWARD);
 | 
			
		||||
  ballIn();
 | 
			
		||||
  driveTiles(0.1, REVERSE);
 | 
			
		||||
   // So we can pick up the ball!
 | 
			
		||||
  wait(3);
 | 
			
		||||
  driveTiles(0.1, REVERSE);
 | 
			
		||||
  turntoLeft(1);
 | 
			
		||||
@@ -267,18 +291,52 @@ task autonomous() {
 | 
			
		||||
  driveTiles(0.05, REVERSE);
 | 
			
		||||
  driveTiles(0.33, FORWARD);
 | 
			
		||||
  wait(2);
 | 
			
		||||
	turntoRight(1);
 | 
			
		||||
	driveTiles(2.2, REVERSE);
 | 
			
		||||
	turntoLeft(1);
 | 
			
		||||
	driveTiles(1, REVERSE);
 | 
			
		||||
	turntoRight(1);
 | 
			
		||||
	driveTiles(0.25, REVERSE);
 | 
			
		||||
	driveTiles(3, FORWARD);
 | 
			
		||||
 | 
			
		||||
  turntoRight(1);
 | 
			
		||||
  driveTiles(2.2, REVERSE);
 | 
			
		||||
  turntoLeft(1);
 | 
			
		||||
  driveTiles(1, REVERSE);
 | 
			
		||||
  turntoRight(1);
 | 
			
		||||
  driveTiles(0.25, REVERSE);
 | 
			
		||||
  driveTiles(3, FORWARD);
 | 
			
		||||
}
 | 
			
		||||
task usercontrol() { // In user control mode
 | 
			
		||||
/*
 | 
			
		||||
This is the autonomous task. Here’s the path of the robot, described in words instead of code:
 | 
			
		||||
 | 
			
		||||
1. Start at the red tile closest to the flags. 
 | 
			
		||||
 | 
			
		||||
2. Turn a tiny bit to the right to aim, and shoot the top flag with our preload.
 | 
			
		||||
 | 
			
		||||
3. Re-align ourselves and drive to hit the bottom flag. 
 | 
			
		||||
 | 
			
		||||
4. Back up 1 tile, turn right, and back into the wall to align the robot.
 | 
			
		||||
 | 
			
		||||
5. Drive forward with the flipper turned on, and flip the cap from blue to red. 
 | 
			
		||||
 | 
			
		||||
6. Back up, turn left, reverse 1 tile, turn right, back into the wall again to align ourselves.
 | 
			
		||||
 | 
			
		||||
7. Drive forward, push the cap off of the ball, turn of the flipper and flip the cap.
 | 
			
		||||
 | 
			
		||||
8. Run the motors to lift the ball up to the ball launcher. We wait a few seconds for the ball.
 | 
			
		||||
 | 
			
		||||
9. Turn to the left, wait a bit more, and shoot the top flag in the middle column of flags.
 | 
			
		||||
 | 
			
		||||
10. Turn right, back up to the starting tile, then turn left.
 | 
			
		||||
 | 
			
		||||
11. Reverse for 1 tile to be perpendicular with the platforms.
 | 
			
		||||
 | 
			
		||||
12. Turn to face the parking platforms, and reverse into the wall to align ourselves again.
 | 
			
		||||
 | 
			
		||||
13. Climb to the middle parking platform and stop. 
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
task usercontrol() {
 | 
			
		||||
  while (true) {
 | 
			
		||||
    joystickDrive(); // Joystick mapping function
 | 
			
		||||
    buttonChecks();  // Button mapping, for lift, ball launcher, etc.
 | 
			
		||||
    joystickDrive();
 | 
			
		||||
    buttonChecks();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
// When the driver is in control, this task runs. For the entire duration of the driver control period, we need 
 | 
			
		||||
// to be able to control the robot, so we put everything in a while loop. The task calls 2 previously mentioned 
 | 
			
		||||
// functions, joystickDrive() and buttonChecks(). 
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user