Initial commit
This commit is contained in:
		
							
								
								
									
										180
									
								
								test3.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								test3.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,180 @@
 | 
			
		||||
# import the necessary packages
 | 
			
		||||
from scipy.spatial import distance as dist
 | 
			
		||||
from imutils import perspective
 | 
			
		||||
from imutils import contours
 | 
			
		||||
import numpy as np
 | 
			
		||||
import argparse
 | 
			
		||||
import imutils
 | 
			
		||||
import cv2
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
itemw = 0
 | 
			
		||||
itemh = 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def midpoint(ptA, ptB):
 | 
			
		||||
	return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
 | 
			
		||||
 | 
			
		||||
def sizeVexScrew(iteml):
 | 
			
		||||
	# Screw Sizing code
 | 
			
		||||
	# subtract screw head size to find thread length
 | 
			
		||||
	shead = 0.09
 | 
			
		||||
	iteml -= shead
 | 
			
		||||
	#print("Thread Length: " + str(iteml))
 | 
			
		||||
	iteml *= 8
 | 
			
		||||
	iteml = round(iteml)
 | 
			
		||||
	iteml /= 8
 | 
			
		||||
	return iteml
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
# construct the argument parse and parse the arguments
 | 
			
		||||
ap = argparse.ArgumentParser()
 | 
			
		||||
ap.add_argument("-i", "--image", required=True,
 | 
			
		||||
	help="path to the input image")
 | 
			
		||||
ap.add_argument("-w", "--width", type=float, required=True,
 | 
			
		||||
	help="width of the left-most object in the image (in inches)")
 | 
			
		||||
ap.add_argument("-n", "--number", type=int, required=False,
 | 
			
		||||
	help="object # to measure (from left to right)")
 | 
			
		||||
ap.add_argument("-s", "--show", type=bool, required=False, 
 | 
			
		||||
	help="show on the screen")
 | 
			
		||||
args = vars(ap.parse_args())
 | 
			
		||||
 | 
			
		||||
selected = 2
 | 
			
		||||
if type(args["number"]) == type(selected):
 | 
			
		||||
	selected = args["number"]
 | 
			
		||||
 | 
			
		||||
# load the image, convert it to grayscale, and blur it slightly
 | 
			
		||||
image = cv2.imread(args["image"])
 | 
			
		||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
gray = cv2.GaussianBlur(gray, (7, 7), 0)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# perform edge detection, then perform a dilation + erosion to
 | 
			
		||||
# close gaps in between object edges
 | 
			
		||||
edged = cv2.Canny(gray, 50, 100)
 | 
			
		||||
edged = cv2.dilate(edged, None, iterations=1)
 | 
			
		||||
edged = cv2.erode(edged, None, iterations=1)
 | 
			
		||||
if args["show"] == True:
 | 
			
		||||
	cv2.imshow("Image", edged)
 | 
			
		||||
	cv2.waitKey(0)
 | 
			
		||||
# find contours in the edge map
 | 
			
		||||
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
 | 
			
		||||
	cv2.CHAIN_APPROX_SIMPLE)
 | 
			
		||||
cnts = imutils.grab_contours(cnts)
 | 
			
		||||
 | 
			
		||||
# sort the contours from left-to-right and initialize the
 | 
			
		||||
# 'pixels per metric' calibration variable
 | 
			
		||||
(cnts, _) = contours.sort_contours(cnts)
 | 
			
		||||
pixelsPerMetric = None
 | 
			
		||||
num = 0
 | 
			
		||||
# loop over the contours individually
 | 
			
		||||
for c in cnts:
 | 
			
		||||
	num += 1
 | 
			
		||||
	# if the contour is not sufficiently large, ignore it
 | 
			
		||||
	if cv2.contourArea(c) < 100:
 | 
			
		||||
		continue
 | 
			
		||||
	# compute the rotated bounding box of the contour
 | 
			
		||||
	orig = image.copy()
 | 
			
		||||
 | 
			
		||||
	box = cv2.minAreaRect(c)
 | 
			
		||||
	box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 | 
			
		||||
	box = np.array(box, dtype="int")
 | 
			
		||||
 | 
			
		||||
	# order the points in the contour such that they appear
 | 
			
		||||
	# in top-left, top-right, bottom-right, and bottom-left
 | 
			
		||||
	# order, then draw the outline of the rotated bounding
 | 
			
		||||
	# box
 | 
			
		||||
	box = perspective.order_points(box)
 | 
			
		||||
	cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
 | 
			
		||||
 | 
			
		||||
	# loop over the original points and draw them
 | 
			
		||||
	for (x, y) in box:
 | 
			
		||||
		cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
 | 
			
		||||
 | 
			
		||||
	# unpack the ordered bounding box, then compute the midpoint
 | 
			
		||||
	# between the top-left and top-right coordinates, followed by
 | 
			
		||||
	# the midpoint between bottom-left and bottom-right coordinates
 | 
			
		||||
	(tl, tr, br, bl) = box
 | 
			
		||||
	(tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
	(blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
 | 
			
		||||
	# compute the midpoint between the top-left and top-right points,
 | 
			
		||||
	# followed by the midpoint between the top-righ and bottom-right
 | 
			
		||||
	(tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
	(trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
 | 
			
		||||
	# draw the midpoints on the image
 | 
			
		||||
	cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
	cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
	cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
 | 
			
		||||
	cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
 | 
			
		||||
	# draw lines between the midpoints
 | 
			
		||||
	cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
 | 
			
		||||
		(255, 0, 255), 2)
 | 
			
		||||
	cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
 | 
			
		||||
		(255, 0, 255), 2)
 | 
			
		||||
 | 
			
		||||
	# unpack the ordered bounding box, then compute the midpoint
 | 
			
		||||
	# between the top-left and top-right coordinates, followed by
 | 
			
		||||
	# the midpoint between bottom-left and bottom-right coordinates
 | 
			
		||||
	(tl, tr, br, bl) = box
 | 
			
		||||
	(tltrX, tltrY) = midpoint(tl, tr)
 | 
			
		||||
	(blbrX, blbrY) = midpoint(bl, br)
 | 
			
		||||
 | 
			
		||||
	# compute the midpoint between the top-left and top-right points,
 | 
			
		||||
	# followed by the midpoint between the top-righ and bottom-right
 | 
			
		||||
	(tlblX, tlblY) = midpoint(tl, bl)
 | 
			
		||||
	(trbrX, trbrY) = midpoint(tr, br)
 | 
			
		||||
 | 
			
		||||
	# draw the midpoints on the image
 | 
			
		||||
	cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
	cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
	cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
 | 
			
		||||
	cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
 | 
			
		||||
 | 
			
		||||
	# draw lines between the midpoints
 | 
			
		||||
	cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
 | 
			
		||||
		(255, 0, 255), 2)
 | 
			
		||||
	cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
 | 
			
		||||
		(255, 0, 255), 2)
 | 
			
		||||
    	# compute the Euclidean distance between the midpoints
 | 
			
		||||
	dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
 | 
			
		||||
	dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
 | 
			
		||||
 | 
			
		||||
	# if the pixels per metric has not been initialized, then
 | 
			
		||||
	# compute it as the ratio of pixels to supplied metric
 | 
			
		||||
	# (in this case, inches)
 | 
			
		||||
	if pixelsPerMetric is None:
 | 
			
		||||
		pixelsPerMetric = dB / args["width"]
 | 
			
		||||
    # compute the size of the object
 | 
			
		||||
	dimA = dA / pixelsPerMetric
 | 
			
		||||
	dimB = dB / pixelsPerMetric
 | 
			
		||||
	
 | 
			
		||||
	if num == selected:
 | 
			
		||||
		itemw = dimA
 | 
			
		||||
		itemh = dimB
 | 
			
		||||
		if itemw >= itemh:
 | 
			
		||||
			iteml = itemw
 | 
			
		||||
		else:
 | 
			
		||||
			iteml = itemh
 | 
			
		||||
		print("Screw Length (RAW): " + str(iteml))
 | 
			
		||||
		iteml = sizeVexScrew(iteml)
 | 
			
		||||
		print("Rounded Length: " + str(iteml))
 | 
			
		||||
	# draw the object sizes on the image
 | 
			
		||||
		if args["show"] == True:
 | 
			
		||||
			cv2.putText(orig, "{:.5f}in".format(dimA),
 | 
			
		||||
				(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
				0.65, (255, 255, 255), 2)
 | 
			
		||||
			cv2.putText(orig, "{:.5f}in".format(dimB),
 | 
			
		||||
				(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
				0.65, (255, 255, 255), 2)
 | 
			
		||||
 
 | 
			
		||||
	# show the output image
 | 
			
		||||
			cv2.imshow("Image", orig)
 | 
			
		||||
			cv2.waitKey(0)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
# Screw Sizing
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user