improve detection, do more checking for the screws
This commit is contained in:
parent
d41d79cdc5
commit
9b1c8e46cb
58
main.py
58
main.py
@ -1,5 +1,5 @@
|
||||
# import the necessary packages
|
||||
from imutils import perspective
|
||||
#from imutils import perspective
|
||||
from imutils import contours
|
||||
import numpy as np
|
||||
import argparse
|
||||
@ -17,7 +17,7 @@ def midpoint(ptA, ptB):
|
||||
def sizeVexScrew(iteml):
|
||||
# Screw Sizing code
|
||||
# subtract screw head size to find thread length
|
||||
shead = 0.09
|
||||
shead = 0.1
|
||||
iteml -= shead
|
||||
#print("Thread Length: " + str(iteml))
|
||||
iteml *= 8
|
||||
@ -27,11 +27,9 @@ def sizeVexScrew(iteml):
|
||||
|
||||
def sizeStandoff(iteml):
|
||||
# Standoff Sizing code
|
||||
|
||||
#print("Thread Length: " + str(iteml))
|
||||
iteml *= 4
|
||||
iteml *= 2
|
||||
iteml = round(iteml)
|
||||
iteml /= 4
|
||||
iteml /= 2
|
||||
return iteml
|
||||
|
||||
|
||||
@ -64,7 +62,9 @@ if type(args["number"]) == type(selected):
|
||||
|
||||
# load the image, convert it to grayscale, and blur it slightly
|
||||
image = cv2.imread(args["image"])
|
||||
image = cv2.resize(image, (int(image.shape[1]*0.2), int(image.shape[0]*0.2)), interpolation = cv2.INTER_NEAREST)
|
||||
#image = cv2.resize(image, (int(image.shape[1]*0.2), int(image.shape[0]*0.2)), interpolation = cv2.INTER_NEAREST)
|
||||
image = cv2.resize(image, (1000, int(image.shape[0]/image.shape[1] * 1000)), interpolation = cv2.INTER_NEAREST)
|
||||
|
||||
if args2.show:
|
||||
cv2.imshow("Item Sorter", image)
|
||||
cv2.waitKey(0)
|
||||
@ -109,7 +109,7 @@ for c in cnts:
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
box = perspective.order_points(box)
|
||||
#box = perspective.order_points(box)
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
@ -134,27 +134,14 @@ for c in cnts:
|
||||
|
||||
if pixelsPerMetric is None and circular is True:
|
||||
pixelsPerMetric = smaller(dA, dB) / args["width"]
|
||||
#cv2.imshow("Screw Length Detection", orig)
|
||||
#cv2.waitKey(0)
|
||||
# order the points in the contour such that they appear
|
||||
# in top-left, top-right, bottom-right, and bottom-left
|
||||
# order, then draw the outline of the rotated bounding
|
||||
# box
|
||||
|
||||
#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
|
||||
|
||||
# if the pixels per metric has not been initialized, then
|
||||
# compute it as the ratio of pixels to supplied metric
|
||||
# (in this case, inches)
|
||||
# compute the size of the object
|
||||
|
||||
orig = image.copy()
|
||||
# loop over the contours individually
|
||||
for c in cnts:
|
||||
num += 1
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100:
|
||||
if cv2.contourArea(c) < 100 or pixelsPerMetric is None:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
|
||||
@ -167,7 +154,7 @@ for c in cnts:
|
||||
# in top-left, top-right, bottom-right, and bottom-left
|
||||
# order, then draw the outline of the rotated bounding
|
||||
# box
|
||||
box = perspective.order_points(box)
|
||||
#box = perspective.order_points(box)
|
||||
|
||||
# loop over the original points and draw them
|
||||
#for (x, y) in box:
|
||||
@ -196,12 +183,7 @@ for c in cnts:
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) - np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) - np.array((trbrX, trbrY, 0)))
|
||||
|
||||
# if the pixels per metric has not been initialized, then
|
||||
# compute it as the ratio of pixels to supplied metric
|
||||
# (in this case, inches)
|
||||
#if pixelsPerMetric is None:
|
||||
# pixelsPerMetric = dB / args["width"]
|
||||
# compute the size of the object
|
||||
|
||||
dimA = dA / pixelsPerMetric
|
||||
dimB = dB / pixelsPerMetric
|
||||
|
||||
@ -238,11 +220,19 @@ for c in cnts:
|
||||
objtype = "Penny"
|
||||
iteml = 0
|
||||
else:
|
||||
epsilon = 4#0.05*cv2.arcLength(c,True)
|
||||
epsilon = 3#0.02*cv2.arcLength(c,True)
|
||||
#print(str(epsilon))
|
||||
approx = cv2.approxPolyDP(c,epsilon,True)
|
||||
hull = cv2.convexHull(approx, returnPoints=False)
|
||||
hull2 = cv2.convexHull(c)
|
||||
defects = cv2.convexityDefects(c,hull)
|
||||
#print(str(defects.size) + " match")
|
||||
cv2.drawContours(orig, (approx.astype("int")), -1, (255, 0, 0), 8)
|
||||
if not cv2.isContourConvex(approx):
|
||||
convexness = area_contour / cv2.contourArea(hull2)
|
||||
#print(str(convexness) + " % fill")
|
||||
#if not cv2.isContourConvex(approx):
|
||||
#if cv2.matchShapes(hull, c, 1, 0.0) > 1:
|
||||
if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75):
|
||||
objtype = "Screw"
|
||||
iteml = larger(dimA, dimB)
|
||||
#print("Screw Length (RAW): " + str(iteml))
|
||||
@ -251,10 +241,12 @@ for c in cnts:
|
||||
else:
|
||||
if itemhr == 0.3125:
|
||||
objtype = "Standoff"
|
||||
iteml = sizeStandoff(radius * 2 / pixelsPerMetric)
|
||||
iteml = sizeStandoff(itemw)
|
||||
|
||||
if itemhr == 0.1875:
|
||||
objtype = "Axle"
|
||||
iteml = radius * 2 / pixelsPerMetric
|
||||
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
|
||||
|
||||
|
||||
print(str(iteml))
|
||||
# draw the object sizes on the image
|
||||
|
Loading…
x
Reference in New Issue
Block a user