Compare commits
39 Commits
Author | SHA1 | Date |
---|---|---|
Cole Deck | 42ca50e4be | 5 years ago |
Cole Deck | 052ea30f73 | 5 years ago |
Cole Deck | dbde062909 | 5 years ago |
Cole Deck | 26119e4056 | 5 years ago |
Cole Deck | eb479df122 | 5 years ago |
Cole Deck | 4eac873412 | 5 years ago |
Cole Deck | 4ca4d0c3cd | 5 years ago |
Cole Deck | fa15964b98 | 5 years ago |
Cole Deck | 68c1f4dc1a | 5 years ago |
Cole Deck | 0cfa5cb1a8 | 5 years ago |
Cole Deck | 830a8e7727 | 5 years ago |
Cole Deck | 4f59cc07d5 | 5 years ago |
Cole Deck | fc4e85a76d | 5 years ago |
Cole Deck | 8a1b5c92ff | 5 years ago |
Cole Deck | 7217cb8b43 | 5 years ago |
Cole Deck | 52ef77e389 | 5 years ago |
Cole Deck | be2357b9b0 | 5 years ago |
Cole Deck | d7a2e2602b | 5 years ago |
Cole Deck | dad1ac9e7a | 5 years ago |
Cole Deck | 4cd3bfc514 | 5 years ago |
Cole Deck | cbda6a6cab | 5 years ago |
Cole Deck | 6524ba6cfe | 5 years ago |
Cole Deck | 47eb71057f | 5 years ago |
Your Name | 190dc73036 | 5 years ago |
Your Name | 5ec6b7a36a | 5 years ago |
Cole Deck | 0feabe96e5 | 5 years ago |
Cole Deck | bcfd61a7cf | 5 years ago |
Cole Deck | e21628b608 | 5 years ago |
Cole Deck | 129ad2a762 | 5 years ago |
Cole Deck | af0410be8e | 5 years ago |
Cole Deck | 574bf7050c | 5 years ago |
Cole Deck | c40d84705f | 5 years ago |
Cole Deck | 72d0015d8f | 5 years ago |
Cole Deck | bfa501b6db | 5 years ago |
Cole Deck | 32ae8d4559 | 5 years ago |
Cole Deck | b1f7129b90 | 5 years ago |
Cole Deck | a8bc28443f | 5 years ago |
Cole Deck | 140465d858 | 5 years ago |
Cole Deck | 58b90af9c3 | 5 years ago |
@ -1,24 +0,0 @@
|
||||
/home/cole/item-sort/positives/IMG_10208.jpg 1 4 3 80 110
|
||||
/home/cole/item-sort/positives/IMG_1155.jpg 1 1 1 30 32
|
||||
/home/cole/item-sort/positives/IMG_1184.jpg 1 1 1 34 30
|
||||
/home/cole/item-sort/positives/IMG_1287.jpg 1 2 2 35 29
|
||||
/home/cole/item-sort/positives/IMG_13351.jpg 1 2 2 165 75
|
||||
/home/cole/item-sort/positives/IMG_13857.jpg 1 2 5 90 142
|
||||
/home/cole/item-sort/positives/IMG_1472.jpg 1 1 1 43 29
|
||||
/home/cole/item-sort/positives/IMG_1584.jpg 1 1 1 45 31
|
||||
/home/cole/item-sort/positives/IMG_1683.jpg 1 1 0 48 32
|
||||
/home/cole/item-sort/positives/IMG_1764.jpg 1 2 1 38 39
|
||||
/home/cole/item-sort/positives/IMG_1776.jpg 1 1 0 45 36
|
||||
/home/cole/item-sort/positives/IMG_19530.jpg 1 4 4 120 149
|
||||
/home/cole/item-sort/positives/IMG_2200.jpg 1 1 0 46 42
|
||||
/home/cole/item-sort/positives/IMG_2772.jpg 1 0 0 83 32
|
||||
/home/cole/item-sort/positives/IMG_2784.jpg 1 1 1 46 55
|
||||
/home/cole/item-sort/positives/IMG_2800.jpg 1 1 1 53 48
|
||||
/home/cole/item-sort/positives/IMG_3285.jpg 1 1 1 71 43
|
||||
/home/cole/item-sort/positives/IMG_3604.jpg 1 1 0 104 33
|
||||
/home/cole/item-sort/positives/IMG_4550.jpg 1 1 1 127 32
|
||||
|
||||
/home/cole/item-sort/positives/IMG_4879.jpg 1 2 2 37 114
|
||||
/home/cole/item-sort/positives/IMG_7412.jpg 1 2 2 105 65
|
||||
/home/cole/item-sort/positives/IMG_7654.jpg 1 4 2 80 84
|
||||
/home/cole/item-sort/positives/IMG_7740.jpg 1 1 2 126 57
|
Before Width: | Height: | Size: 5.6 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 7.6 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 10 KiB |
@ -1,38 +0,0 @@
|
||||
negatives/IMG_10285.jpg
|
||||
negatives/IMG_1190.jpg
|
||||
negatives/IMG_1225.jpg
|
||||
negatives/IMG_1443.jpg
|
||||
negatives/IMG_1482.jpg
|
||||
negatives/IMG_17202.jpg
|
||||
negatives/IMG_18939.jpg
|
||||
negatives/IMG_19860.jpg
|
||||
negatives/IMG_2116.jpg
|
||||
negatives/IMG_2408.jpg
|
||||
negatives/IMG_2475.jpg
|
||||
negatives/IMG_2548.jpg
|
||||
negatives/IMG_2597.jpg
|
||||
negatives/IMG_2700.jpg
|
||||
negatives/IMG_27048.jpg
|
||||
negatives/IMG_2805.jpg
|
||||
negatives/IMG_28583.jpg
|
||||
negatives/IMG_30940.jpg
|
||||
negatives/IMG_35235.jpg
|
||||
negatives/IMG_3599.jpg
|
||||
negatives/IMG_36040.jpg
|
||||
negatives/IMG_36400.jpg
|
||||
negatives/IMG_3666.jpg
|
||||
negatives/IMG_3840.jpg
|
||||
negatives/IMG_3844.jpg
|
||||
negatives/IMG_40176.jpg
|
||||
negatives/IMG_42840.jpg
|
||||
negatives/IMG_5041.jpg
|
||||
negatives/IMG_5184.jpg
|
||||
negatives/IMG_5402.jpg
|
||||
negatives/IMG_5700.jpg
|
||||
negatives/IMG_5820.jpg
|
||||
negatives/IMG_6014.jpg
|
||||
negatives/IMG_6016.jpg
|
||||
negatives/IMG_6240.jpg
|
||||
negatives/IMG_6435.jpg
|
||||
negatives/IMG_7482.jpg
|
||||
negatives/IMG_9800.jpg
|
@ -0,0 +1,13 @@
|
||||
[Unit]
|
||||
Description=UDP Camera Stream
|
||||
After=network.target auditd.service media-writable.mount
|
||||
Requires=media-writable.mount
|
||||
|
||||
[Service]
|
||||
ExecStart=/media/writable/run.sh
|
||||
Restart=always
|
||||
Type=idle
|
||||
User=pi
|
||||
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
@ -0,0 +1,15 @@
|
||||
[Unit]
|
||||
Description=Python Sorting Client
|
||||
After=network.target auditd.service media-writable.mount
|
||||
Requires=media-writable.mount
|
||||
|
||||
[Service]
|
||||
ExecStart=/media/writable/item-sort/pi_client.py
|
||||
Restart=always
|
||||
Type=idle
|
||||
User=root
|
||||
StartLimitIntervalSec=0
|
||||
RestartSec=5
|
||||
WorkingDirectory=/media/writable/item-sort
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
@ -0,0 +1,13 @@
|
||||
from distutils.core import setup
|
||||
from distutils.extension import Extension
|
||||
from Cython.Distutils import build_ext
|
||||
ext_modules = [
|
||||
Extension("detect", ["detect.py"]),
|
||||
#Extension("mymodule2", ["mymodule2.py"]),
|
||||
# ... all your modules that need be compiled ...
|
||||
]
|
||||
setup(
|
||||
name = 'Item Sorter',
|
||||
cmdclass = {'build_ext': build_ext},
|
||||
ext_modules = ext_modules
|
||||
)
|
@ -0,0 +1,101 @@
|
||||
import math
|
||||
import serial
|
||||
import RPi.GPIO as gpio
|
||||
import time
|
||||
|
||||
ser = serial.Serial('/dev/ttyUSB0', 115200)
|
||||
gpio.setmode(gpio.BCM)
|
||||
gpio.setup(13, gpio.OUT)
|
||||
pwm = gpio.PWM(13, 100)
|
||||
pwm.start(13)
|
||||
verbose = True
|
||||
|
||||
print("[ INFO ] Initializing Grbl...")
|
||||
ser.write(b'\r\n\r\n')
|
||||
time.sleep(2)
|
||||
ser.write(b'$RST=#\n')
|
||||
time.sleep(1)
|
||||
ser.flushInput()
|
||||
time.sleep(0.25)
|
||||
ser.write(b'$X\n')
|
||||
print("[ INFO ] Grbl is ready.")
|
||||
|
||||
def goToBin(bin):
|
||||
print("[ INFO ] Delivering item to bin: " + str(bin))
|
||||
adjustedBin = math.floor(bin / 2)
|
||||
if adjustedBin > 11:
|
||||
print("[ INFO ] All bins full! Using overflow bin.")
|
||||
bin = 0;
|
||||
adjustedBin = 0;
|
||||
distance = adjustedBin * 18
|
||||
delay = 0.5 + 0.93 * adjustedBin
|
||||
command = '$J=X-'
|
||||
command += str(distance)
|
||||
command += ' F2000'
|
||||
print("[ INFO ] Sending command to Grbl: " + command)
|
||||
command += '\n'
|
||||
time.sleep(0.25)
|
||||
ser.write(command.encode('utf-8'))
|
||||
# s.write("$C\n")
|
||||
while True:
|
||||
grbl_out = str(ser.readline().strip()) # Wait for grbl response with carriage return
|
||||
print(grbl_out)
|
||||
if int(grbl_out.find('error')) >= 0 :
|
||||
print("[ EXIT ] Grbl reported an error.")
|
||||
quit()
|
||||
elif int(grbl_out.find('ok')) >= 0 :
|
||||
if verbose: print('[ INFO ] Grbl message: ',grbl_out)
|
||||
break
|
||||
print("[ INFO ] Waiting for " + str(delay) + " seconds.")
|
||||
time.sleep(delay)
|
||||
if bin % 2 == 0: # tilt to left
|
||||
print("[ INFO ] Titling motor to left side.")
|
||||
pwm.ChangeDutyCycle(5)
|
||||
time.sleep(1)
|
||||
pwm.ChangeDutyCycle(14)
|
||||
else:
|
||||
print("[ INFO ] Titling motor to right side.")
|
||||
pwm.ChangeDutyCycle(25)
|
||||
time.sleep(1)
|
||||
pwm.ChangeDutyCycle(14)
|
||||
time.sleep(1)
|
||||
print("[ INFO ] Sending command to Grbl: G0 X0")
|
||||
ser.write(b'$j=X0 F2000\n')
|
||||
while True:
|
||||
grbl_out = str(ser.readline().strip()) # Wait for grbl response with carriage return
|
||||
if int(grbl_out.find('error')) >= 0 :
|
||||
print("[ EXIT ] Grbl reported an error.")
|
||||
quit()
|
||||
elif int(grbl_out.find('ok')) >= 0 :
|
||||
if verbose: print('[ INFO ] Grbl message: ',grbl_out)
|
||||
break
|
||||
print("[ INFO ] Waiting for " + str(delay) + " seconds.")
|
||||
time.sleep(delay)
|
||||
def stopInput():
|
||||
command = '!'
|
||||
command += '\n'
|
||||
ser.write(command.encode('utf-8'))
|
||||
print(command)
|
||||
#command2 = str(0x85)
|
||||
#ser.write(command2.encode('utf-8'))
|
||||
#while True:
|
||||
# grbl_out = str(ser.readline().strip()) # Wait for grbl response with carriage return
|
||||
# if int(grbl_out.find('error')) >= 0 :
|
||||
# print("[ EXIT ] Grbl reported an error.")
|
||||
# quit()
|
||||
# elif int(grbl_out.find('ok')) >= 0 :
|
||||
# if verbose: print('[ INFO ] Grbl message: ',grbl_out)
|
||||
# break
|
||||
def startInput():
|
||||
ser.write(b'$J=G91 Y-5000 F400\n')
|
||||
print("intake")
|
||||
#x = 0
|
||||
#while True and x < 10:
|
||||
#x += 1
|
||||
#grbl_out = str(ser.readline().strip()) # Wait for grbl response with carriage return
|
||||
#if int(grbl_out.find('error')) >= 0 :
|
||||
# print("[ EXIT ] Grbl reported an error.")
|
||||
# quit()
|
||||
#elif int(grbl_out.find('ok')) >= 0 :
|
||||
# if verbose: print('[ INFO ] Grbl message: ',grbl_out)
|
||||
# break
|
@ -0,0 +1,7 @@
|
||||
import board
|
||||
import neopixel
|
||||
pixels = neopixel.NeoPixel(board.D18, 23)
|
||||
def ledOff():
|
||||
pixels.fill((0,0,0))
|
||||
def ledOn():
|
||||
pixels.fill((2,2,2))
|
@ -0,0 +1,387 @@
|
||||
# import the necessary packages
|
||||
#from imutils import perspective
|
||||
from imutils import contours
|
||||
import numpy as np
|
||||
import argparse
|
||||
import imutils
|
||||
import cv2
|
||||
import math
|
||||
import time
|
||||
|
||||
itemw = 0
|
||||
itemh = 0
|
||||
|
||||
|
||||
def midpoint(ptA, ptB):
|
||||
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
||||
|
||||
|
||||
def sizeVexScrew(iteml):
|
||||
# Screw Sizing code
|
||||
# subtract screw head size to find thread length
|
||||
shead = 0.1
|
||||
iteml -= shead
|
||||
#print("Thread Length: " + str(iteml))
|
||||
iteml *= 8
|
||||
iteml = round(iteml)
|
||||
iteml /= 8
|
||||
return iteml
|
||||
|
||||
|
||||
def sizeStandoff(iteml):
|
||||
# Standoff Sizing code
|
||||
iteml *= 2
|
||||
iteml = round(iteml)
|
||||
iteml /= 2
|
||||
return iteml
|
||||
|
||||
|
||||
def larger(a, b):
|
||||
if a >= b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
|
||||
|
||||
def smaller(a, b):
|
||||
if a < b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
|
||||
|
||||
def near(a, b, close):
|
||||
if abs(a-b) < close:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def swap(a, b):
|
||||
tmp = a
|
||||
a = b
|
||||
b = tmp
|
||||
"""
|
||||
# construct the argument parse and parse the arguments
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-i", "--image", required=True,
|
||||
help="path to the input image")
|
||||
#ap.add_argument("-c", "--cascade", required=True,
|
||||
# help="path to the cascade")
|
||||
ap.add_argument("-w", "--width", type=float, required=True,
|
||||
help="width of the left-most object in the image (in inches)")
|
||||
ap.add_argument("-n", "--number", type=int, required=False,
|
||||
help="object # to measure (from left to right)")
|
||||
ap.add_argument("-s", "--show", action="store_true",
|
||||
help="show on the screen")
|
||||
args = vars(ap.parse_args())
|
||||
args2 = ap.parse_args()"""
|
||||
def detect(calibration_width, img_file, show, quick):
|
||||
list = []
|
||||
#if type(args["number"]) == type(selected):
|
||||
# selected = args["number"]
|
||||
|
||||
# load the image, convert it to grayscale, and blur it slightly
|
||||
image = None
|
||||
#print(str(type(img_file)))
|
||||
if str(type(img_file)) == "<class 'numpy.ndarray'>":
|
||||
image = img_file.copy()
|
||||
else:
|
||||
image = cv2.imread(img_file)
|
||||
|
||||
#image = img_file.copy()
|
||||
image = cv2.resize(image, (math.floor(image.shape[1]*0.5), math.floor(image.shape[0]*0.5)))
|
||||
#image = cv2.resize(image, (1000, int(image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
if show and not quick:
|
||||
cv2.namedWindow("Item Sorter")
|
||||
cv2.imshow("Item Sorter", image)
|
||||
cv2.waitKey(0)
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
||||
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
||||
# perform edge detection, then perform a dilation + erosion to
|
||||
# close gaps in between object edges
|
||||
edged = cv2.Canny(gray, 50, 100)
|
||||
edged = cv2.dilate(edged, None, iterations=2)
|
||||
edged = cv2.erode(edged, None, iterations=2)
|
||||
edged = cv2.dilate(edged, None, iterations=1)
|
||||
edged = cv2.erode(edged, None, iterations=1)
|
||||
edged = cv2.dilate(edged, None, iterations=2)
|
||||
#edged = cv2.erode(edged, None, iterations=1)
|
||||
#edged = cv2.dilate(edged, None, iterations=1)
|
||||
if show and not quick:
|
||||
cv2.imshow("Item Sorter", edged)
|
||||
cv2.waitKey(0)
|
||||
# find contours in the edge map
|
||||
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# sort the contours from left-to-right and initialize the
|
||||
# 'pixels per metric' calibration variable
|
||||
#(cnts, _) = contours.sort_contours(cnts)
|
||||
pixelsPerMetric = None
|
||||
num = 0
|
||||
|
||||
# Calibration loop
|
||||
"""
|
||||
for c in cnts:
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
orig = image.copy()
|
||||
box = cv2.minAreaRect(c)
|
||||
# xpos,ypos,w,h = cv2.boundingRect(c)
|
||||
# crop_img = orig[ypos:ypos+h, xpos:xpos+w]
|
||||
# cv2.imwrite("object_images/IMG_" + str(w*h) + ".jpg", crop_img) # create training images
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
#box = perspective.order_points(box)
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
||||
np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
||||
np.array((trbrX, trbrY, 0)))
|
||||
area_box = dA * dB
|
||||
(x, y), radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 3)
|
||||
mask = np.zeros(gray.shape, np.uint8)
|
||||
cv2.drawContours(mask, [c], 0, 255, -1)
|
||||
#pixelpoints = np.transpose(np.nonzero(mask))
|
||||
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
||||
mean_val = cv2.mean(hsv, mask=mask)
|
||||
#print(str(mean_val[0]))
|
||||
#print(", " + str(mean_val[0]/mean_val[2]))
|
||||
#print(", " + str(mean_val[2]/mean_val[1]))
|
||||
if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
|
||||
# and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
|
||||
pixelsPerMetric = smaller(dA, dB) / calibration_width
|
||||
continue
|
||||
"""
|
||||
pixelsPerMetric = 25
|
||||
orig = image.copy()
|
||||
objtype = "Object"
|
||||
objname = ""
|
||||
c = None
|
||||
# loop over the contours individually
|
||||
if len(cnts) == 0:
|
||||
return ((),edged)
|
||||
area = cv2.contourArea(cnts[0])
|
||||
if area < 400:
|
||||
area = 0
|
||||
for contour in cnts:
|
||||
if cv2.contourArea(contour) >= area and cv2.contourArea(contour) > 400:
|
||||
area = cv2.contourArea(contour)
|
||||
c = contour
|
||||
if c is not None:
|
||||
#orig = image.copy()
|
||||
num += 1
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
#pixelsPerMetric = 75
|
||||
#if cv2.contourArea(c) < 300 or pixelsPerMetric is None:
|
||||
#continue
|
||||
# compute the rotated bounding box of the contour
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
# unpack the ordered bounding box, then compute the midpoint
|
||||
# between the top-left and top-right coordinates, followed by
|
||||
# the midpoint between bottom-left and bottom-right coordinates
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
# compute the midpoint between the top-left and top-right points,
|
||||
# followed by the midpoint between the top-right and bottom-right
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
# compute the Euclidean distance between the midpoints
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
||||
np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
||||
np.array((trbrX, trbrY, 0)))
|
||||
|
||||
dimA = dA / pixelsPerMetric
|
||||
dimB = dB / pixelsPerMetric
|
||||
|
||||
# Item detection
|
||||
area_box = dA * dB
|
||||
(x, y), radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig, (int(x), int(y)), int(radius), (255, 0, 0), 2)
|
||||
objtype = "Object"
|
||||
itemw = larger(dimA, dimB)
|
||||
itemwr = itemw
|
||||
itemwr *= 8
|
||||
itemwr = round(itemwr)
|
||||
itemwr /= 8
|
||||
itemh = smaller(dimA, dimB)
|
||||
itemhr = itemh
|
||||
itemhr *= 16
|
||||
itemhr = round(itemhr)
|
||||
itemhr /= 16
|
||||
if circular and itemwr == 0.75:
|
||||
objtype = "Penny"
|
||||
iteml = 0
|
||||
"""else:
|
||||
|
||||
if circular and near(radius * 2 / pixelsPerMetric, 0.4, 0.03):
|
||||
# Keps nut or spacer
|
||||
objtype = "Spacer"
|
||||
mask = np.zeros(gray.shape, np.uint8)
|
||||
cv2.drawContours(mask, [c], 0, 255, -1)
|
||||
#pixelpoints = np.transpose(np.nonzero(mask))
|
||||
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
||||
mean_val = cv2.mean(hsv, mask=mask)
|
||||
mean_rgb = cv2.mean(orig, mask=mask)
|
||||
if near(mean_rgb[2], 59, 3) and near(mean_val[1], 85, 5): #and near(mean_val[2], 78, 5):
|
||||
objtype = "Keps Nut"
|
||||
print(str(mean_rgb[2]) + objtype + str(mean_val[1]))
|
||||
elif circular and near(radius / pixelsPerMetric, 0.23, 0.02):
|
||||
objtype = "Washer"
|
||||
#print(str(radius * 2 / pixelsPerMetric) + objtype)
|
||||
epsilon = 3 # 0.02*cv2.arcLength(c,True)
|
||||
# print(str(epsilon))
|
||||
approx = cv2.approxPolyDP(c, epsilon, True)
|
||||
hull = cv2.convexHull(approx, returnPoints=False)
|
||||
hull2 = cv2.convexHull(c)
|
||||
defects = cv2.convexityDefects(c, hull)
|
||||
#print(str(defects.size) + " match")
|
||||
cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
|
||||
cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
|
||||
convexness = area_contour / cv2.contourArea(hull2)
|
||||
#print(str(convexness) + " % fill")
|
||||
# if not cv2.isContourConvex(approx):
|
||||
# if cv2.matchShapes(hull, c, 1, 0.0) > 1:
|
||||
if defects is not None and defects.size > 5 and (convexness < 0.9 or boxiness < 0.75) and rectangular:
|
||||
objtype = "Screw"
|
||||
iteml = larger(dimA, dimB)
|
||||
#print("Screw Length (RAW): " + str(iteml))
|
||||
iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
|
||||
#print("Rounded Length: " + str(iteml))
|
||||
else:
|
||||
if itemhr == 0.3125 and rectangular:
|
||||
objtype = "Standoff"
|
||||
iteml = sizeStandoff(itemw)
|
||||
if itemhr == 0.1875 and rectangular:
|
||||
objtype = "Axle"
|
||||
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
|
||||
"""
|
||||
rows, cols = orig.shape[:2]
|
||||
[vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
|
||||
lefty = int((-xx*vy/vx) + yy)
|
||||
righty = int(((cols-xx)*vy/vx)+yy)
|
||||
# cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||
slope = (lefty - righty) / (1 - cols)
|
||||
angle = math.atan(slope)
|
||||
xpos = x - math.cos(angle) * radius
|
||||
ypos = y - math.sin(angle) * radius
|
||||
xpos2 = x + math.cos(angle) * radius
|
||||
ypos2 = y + math.sin(angle) * radius
|
||||
if xpos > xpos2:
|
||||
swap(xpos, xpos2)
|
||||
swap(ypos, ypos2)
|
||||
if rectangular:
|
||||
cv2.line(orig, (int(xpos), int(ypos)),
|
||||
(int(xpos2), int(ypos2)), (255, 127, 0), 2)
|
||||
# print(str(iteml))
|
||||
# draw the object sizes on the image
|
||||
# cv2.putText(orig, "{:.5f}in".format(itemhr),
|
||||
# (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
# 0.65, (255, 255, 255), 2)
|
||||
if objtype != "Penny":
|
||||
objtype = magicSort(c)
|
||||
if objtype == "Object":
|
||||
objtype = magicSort(c)
|
||||
output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
|
||||
if circular:
|
||||
cv2.putText(orig, str(objtype),
|
||||
(int(x - 25), int(y + radius + 20)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6, (50, 50, 220), 2)
|
||||
else:
|
||||
cv2.putText(orig, str(objtype),
|
||||
(int(xpos2 + 10), int(ypos2 + 20)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6, (50, 50, 220), 2)
|
||||
output = ""
|
||||
objname = objtype;
|
||||
"""
|
||||
if objtype == "Screw" or objtype == "Standoff":
|
||||
output = str(iteml) + "in"
|
||||
objname += str(iteml)
|
||||
if objtype == "Axle":
|
||||
output = "{:.2f}in".format(iteml)
|
||||
objname += str(itemwr)
|
||||
#print(objname)
|
||||
"""
|
||||
list.append(objname)
|
||||
if circular:
|
||||
cv2.putText(orig, output, # print data
|
||||
(int(x - 25), int(y + radius + 40)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5, (50, 50, 220), 1)
|
||||
else:
|
||||
cv2.putText(orig, output, # print data
|
||||
(int(xpos2 + 10), int(ypos2 + 40)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5, (50, 50, 220), 1)
|
||||
# show the output image
|
||||
if show and not quick:
|
||||
cv2.imshow("Item Sorter", orig)
|
||||
#cv2.waitKey(1)
|
||||
if not quick:
|
||||
cv2.waitKey(0)
|
||||
return (list, edged)
|
||||
|
||||
def magicSort(contour):
|
||||
moments = cv2.moments(contour)
|
||||
humoments = cv2.HuMoments(moments)
|
||||
#humoments[6] = abs(humoments[6]) #it's possible for the last number to change sign if item is mirrored
|
||||
#magicNumber1 = 0
|
||||
#magicNumber2 = 0
|
||||
name = "Object"
|
||||
for i in range(0,7):
|
||||
if humoments[i] == 0:
|
||||
humoments[i] = 0.1;
|
||||
humoments[i] = -1 * math.copysign(1.0, humoments[i]) * math.log10(abs(humoments[i]))
|
||||
if i > 1:
|
||||
humoments[i] = int(round(humoments[i][0] / 8) * 8)
|
||||
if i != 4 and i != 6:
|
||||
name += ", " + str(abs(int(humoments[i][0])))
|
||||
#magicNumber1 += abs(humoments[i][0])
|
||||
else:
|
||||
humoments[i] = int(round(humoments[i][0] * 4) * 16)
|
||||
name += ", " + str(abs(int(humoments[i][0])))
|
||||
#magicNumber2 += abs(humoments[i][0])
|
||||
#magicNumber += humoments[i][0]
|
||||
#print(str(humoments))
|
||||
#print(magicNumber)
|
||||
#name = "Unknown: " + str(int(magicNumber1)) + ", " + str(int(magicNumber2))
|
||||
#print(name)
|
||||
return name
|
Before Width: | Height: | Size: 2.7 KiB |
Before Width: | Height: | Size: 2.6 KiB |
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 3.9 MiB |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 1.8 KiB |
@ -1,333 +1,2 @@
|
||||
# import the necessary packages
|
||||
#from imutils import perspective
|
||||
from imutils import contours
|
||||
import numpy as np
|
||||
import argparse
|
||||
import imutils
|
||||
import cv2
|
||||
import math
|
||||
import time
|
||||
|
||||
itemw = 0
|
||||
itemh = 0
|
||||
|
||||
|
||||
def midpoint(ptA, ptB):
|
||||
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
||||
|
||||
|
||||
def sizeVexScrew(iteml):
|
||||
# Screw Sizing code
|
||||
# subtract screw head size to find thread length
|
||||
shead = 0.1
|
||||
iteml -= shead
|
||||
#print("Thread Length: " + str(iteml))
|
||||
iteml *= 8
|
||||
iteml = round(iteml)
|
||||
iteml /= 8
|
||||
return iteml
|
||||
|
||||
|
||||
def sizeStandoff(iteml):
|
||||
# Standoff Sizing code
|
||||
iteml *= 2
|
||||
iteml = round(iteml)
|
||||
iteml /= 2
|
||||
return iteml
|
||||
|
||||
|
||||
def larger(a, b):
|
||||
if a >= b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
|
||||
|
||||
def smaller(a, b):
|
||||
if a < b:
|
||||
return a
|
||||
else:
|
||||
return b
|
||||
|
||||
|
||||
def near(a, b, close):
|
||||
if abs(a-b) < close:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def swap(a, b):
|
||||
tmp = a
|
||||
a = b
|
||||
b = tmp
|
||||
|
||||
|
||||
# construct the argument parse and parse the arguments
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-i", "--image", required=True,
|
||||
help="path to the input image")
|
||||
ap.add_argument("-c", "--cascade", required=True,
|
||||
help="path to the cascade")
|
||||
ap.add_argument("-w", "--width", type=float, required=True,
|
||||
help="width of the left-most object in the image (in inches)")
|
||||
ap.add_argument("-n", "--number", type=int, required=False,
|
||||
help="object # to measure (from left to right)")
|
||||
ap.add_argument("-s", "--show", action="store_true",
|
||||
help="show on the screen")
|
||||
args = vars(ap.parse_args())
|
||||
args2 = ap.parse_args()
|
||||
selected = 2
|
||||
if type(args["number"]) == type(selected):
|
||||
selected = args["number"]
|
||||
|
||||
# load the image, convert it to grayscale, and blur it slightly
|
||||
image = cv2.imread(args["image"])
|
||||
#image = cv2.resize(image, (int(image.shape[1]*1), int(image.shape[0]*1)))
|
||||
image = cv2.resize(image, (1000, int(
|
||||
image.shape[0]/image.shape[1] * 1000)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
if args2.show:
|
||||
cv2.namedWindow("Item Sorter")
|
||||
cv2.imshow("Item Sorter", image)
|
||||
cv2.waitKey(0)
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
||||
|
||||
|
||||
# perform edge detection, then perform a dilation + erosion to
|
||||
# close gaps in between object edges
|
||||
edged = cv2.Canny(gray, 50, 100)
|
||||
edged = cv2.dilate(edged, None, iterations=1)
|
||||
#edged = cv2.erode(edged, None, iterations=1)
|
||||
|
||||
if args2.show:
|
||||
cv2.imshow("Item Sorter", edged)
|
||||
cv2.waitKey(0)
|
||||
# find contours in the edge map
|
||||
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# sort the contours from left-to-right and initialize the
|
||||
# 'pixels per metric' calibration variable
|
||||
#(cnts, _) = contours.sort_contours(cnts)
|
||||
pixelsPerMetric = None
|
||||
num = 0
|
||||
|
||||
cascade = cv2.CascadeClassifier()
|
||||
if not cascade.load(cv2.samples.findFile(args2.cascade)):
|
||||
print('--(!)Error loading face cascade')
|
||||
exit(0)
|
||||
screws = cascade.detectMultiScale(image)
|
||||
frame = image.copy()
|
||||
for (x,y,w,h) in screws:
|
||||
center = (x + w//2, y + h//2)
|
||||
frame = cv2.ellipse(frame, center, (w//2, h//2), 0, 0, 360, (255, 0, 255), 4)
|
||||
if args2.show:
|
||||
cv2.imshow("Item Sorter", frame)
|
||||
cv2.waitKey(0)
|
||||
# Calibration loop
|
||||
for c in cnts:
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
orig = image.copy()
|
||||
box = cv2.minAreaRect(c)
|
||||
# xpos,ypos,w,h = cv2.boundingRect(c)
|
||||
# crop_img = orig[ypos:ypos+h, xpos:xpos+w]
|
||||
# cv2.imwrite("object_images/IMG_" + str(w*h) + ".jpg", crop_img) # create training images
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
#box = perspective.order_points(box)
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
||||
np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
||||
np.array((trbrX, trbrY, 0)))
|
||||
area_box = dA * dB
|
||||
(x, y), radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 2)
|
||||
mask = np.zeros(gray.shape, np.uint8)
|
||||
cv2.drawContours(mask, [c], 0, 255, -1)
|
||||
#pixelpoints = np.transpose(np.nonzero(mask))
|
||||
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
|
||||
mean_val = cv2.mean(hsv, mask=mask)
|
||||
print(str(mean_val[0]))
|
||||
#print(", " + str(mean_val[0]/mean_val[2]))
|
||||
#print(", " + str(mean_val[2]/mean_val[1]))
|
||||
if pixelsPerMetric is None and circular is True and near(mean_val[0], 16, 4.5):
|
||||
# and near(mean_val[0], 63, 40) is True and near(mean_val[1], 108, 40) is True and near(mean_val[2], 104, 40) is True:
|
||||
pixelsPerMetric = smaller(dA, dB) / args["width"]
|
||||
|
||||
|
||||
orig = image.copy()
|
||||
# loop over the contours individually
|
||||
for c in cnts:
|
||||
#orig = image.copy()
|
||||
num += 1
|
||||
# if the contour is not sufficiently large, ignore it
|
||||
if cv2.contourArea(c) < 100 or pixelsPerMetric is None:
|
||||
continue
|
||||
# compute the rotated bounding box of the contour
|
||||
|
||||
box = cv2.minAreaRect(c)
|
||||
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||||
box = np.array(box, dtype="int")
|
||||
|
||||
# order the points in the contour such that they appear
|
||||
# in top-left, top-right, bottom-right, and bottom-left
|
||||
# order, then draw the outline of the rotated bounding
|
||||
# box
|
||||
#box = perspective.order_points(box)
|
||||
|
||||
# loop over the original points and draw them
|
||||
# for (x, y) in box:
|
||||
#cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
|
||||
|
||||
# unpack the ordered bounding box, then compute the midpoint
|
||||
# between the top-left and top-right coordinates, followed by
|
||||
# the midpoint between bottom-left and bottom-right coordinates
|
||||
(tl, tr, br, bl) = box
|
||||
(tltrX, tltrY) = midpoint(tl, tr)
|
||||
(blbrX, blbrY) = midpoint(bl, br)
|
||||
|
||||
# compute the midpoint between the top-left and top-right points,
|
||||
# followed by the midpoint between the top-right and bottom-right
|
||||
(tlblX, tlblY) = midpoint(tl, bl)
|
||||
(trbrX, trbrY) = midpoint(tr, br)
|
||||
# draw the midpoints on the image
|
||||
#cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
||||
#cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
||||
|
||||
# draw lines between the midpoints
|
||||
# compute the Euclidean distance between the midpoints
|
||||
dA = np.linalg.norm(np.array((tltrX, tltrY, 0)) -
|
||||
np.array((blbrX, blbrY, 0)))
|
||||
dB = np.linalg.norm(np.array((tlblX, tlblY, 0)) -
|
||||
np.array((trbrX, trbrY, 0)))
|
||||
|
||||
dimA = dA / pixelsPerMetric
|
||||
dimB = dB / pixelsPerMetric
|
||||
|
||||
if num == selected or args2.show:
|
||||
area_box = dA * dB
|
||||
(x, y), radius = cv2.minEnclosingCircle(c)
|
||||
area_contour = cv2.contourArea(c)
|
||||
area_circle = math.pi * pow(radius, 2)
|
||||
boxiness = area_contour / area_box
|
||||
circleness = area_contour / area_circle
|
||||
circular = False
|
||||
rectangular = False
|
||||
if boxiness > circleness:
|
||||
rectangular = True
|
||||
#cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||||
else:
|
||||
circular = True
|
||||
cv2.circle(orig, (int(x), int(y)), int(radius), (0, 255, 0), 1)
|
||||
|
||||
objtype = "Unknown"
|
||||
itemw = larger(dimA, dimB)
|
||||
itemwr = itemw
|
||||
itemwr *= 8
|
||||
itemwr = round(itemwr)
|
||||
itemwr /= 8
|
||||
|
||||
itemh = smaller(dimA, dimB)
|
||||
itemhr = itemh
|
||||
itemhr *= 16
|
||||
itemhr = round(itemhr)
|
||||
itemhr /= 16
|
||||
if circular and itemwr == 0.75:
|
||||
objtype = "Penny"
|
||||
iteml = 0
|
||||
else:
|
||||
epsilon = 3 # 0.02*cv2.arcLength(c,True)
|
||||
# print(str(epsilon))
|
||||
approx = cv2.approxPolyDP(c, epsilon, True)
|
||||
hull = cv2.convexHull(approx, returnPoints=False)
|
||||
hull2 = cv2.convexHull(c)
|
||||
defects = cv2.convexityDefects(c, hull)
|
||||
#print(str(defects.size) + " match")
|
||||
cv2.drawContours(orig, (hull2), -1, (0, 0, 255), 3)
|
||||
cv2.drawContours(orig, (approx), -1, (255, 0, 0), 3)
|
||||
convexness = area_contour / cv2.contourArea(hull2)
|
||||
#print(str(convexness) + " % fill")
|
||||
# if not cv2.isContourConvex(approx):
|
||||
# if cv2.matchShapes(hull, c, 1, 0.0) > 1:
|
||||
if defects.size > 5 and (convexness < 0.9 or boxiness < 0.75):
|
||||
objtype = "Screw"
|
||||
iteml = larger(dimA, dimB)
|
||||
#print("Screw Length (RAW): " + str(iteml))
|
||||
iteml = sizeVexScrew(radius * 2 / pixelsPerMetric)
|
||||
#print("Rounded Length: " + str(iteml))
|
||||
else:
|
||||
if itemhr == 0.3125:
|
||||
objtype = "Standoff"
|
||||
iteml = sizeStandoff(itemw)
|
||||
|
||||
if itemhr == 0.1875:
|
||||
objtype = "Axle"
|
||||
iteml = (radius * 2 / pixelsPerMetric + itemw) / 2
|
||||
|
||||
rows, cols = orig.shape[:2]
|
||||
[vx, vy, xx, yy] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
|
||||
lefty = int((-xx*vy/vx) + yy)
|
||||
righty = int(((cols-xx)*vy/vx)+yy)
|
||||
# cv2.line(orig,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||
slope = (lefty - righty) / (1 - cols)
|
||||
angle = math.atan(slope)
|
||||
xpos = x - math.cos(angle) * radius
|
||||
ypos = y - math.sin(angle) * radius
|
||||
xpos2 = x + math.cos(angle) * radius
|
||||
ypos2 = y + math.sin(angle) * radius
|
||||
if xpos > xpos2:
|
||||
swap(xpos, xpos2)
|
||||
swap(ypos, ypos2)
|
||||
if rectangular:
|
||||
cv2.line(orig, (int(xpos), int(ypos)),
|
||||
(int(xpos2), int(ypos2)), (0, 255, 0), 1)
|
||||
# print(str(iteml))
|
||||
# draw the object sizes on the image
|
||||
if args2.show:
|
||||
# cv2.putText(orig, "{:.5f}in".format(itemhr),
|
||||
# (int(trbrX + 20), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
# 0.65, (255, 255, 255), 2)
|
||||
cv2.putText(orig, str(objtype),
|
||||
(int(xpos2 + 10), int(ypos2 + 20)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.65, (255, 255, 255), 2)
|
||||
output = ""
|
||||
if objtype == "Unknown":
|
||||
output = "{:.2f}in".format(itemw) + " x {:.2f}in".format(itemh)
|
||||
if objtype == "Screw" or objtype == "Standoff":
|
||||
output = str(iteml) + "in"
|
||||
if objtype == "Axle":
|
||||
output = "{:.2f}in".format(iteml)
|
||||
cv2.putText(orig, output, # print data
|
||||
(int(xpos2 + 10), int(ypos2 + 40)
|
||||
), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.65, (255, 255, 255), 2)
|
||||
|
||||
# show the output image
|
||||
cv2.imshow("Item Sorter", orig)
|
||||
cv2.waitKey(25)
|
||||
|
||||
cv2.waitKey(0)
|
||||
from logic import main # this comes from a compiled binary
|
||||
main ()
|
Before Width: | Height: | Size: 5.6 KiB |
Before Width: | Height: | Size: 1.7 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 7.4 KiB |
Before Width: | Height: | Size: 9.5 KiB |
Before Width: | Height: | Size: 8.2 KiB |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 2.0 KiB |
Before Width: | Height: | Size: 1.9 KiB |
Before Width: | Height: | Size: 2.1 KiB |
Before Width: | Height: | Size: 2.1 KiB |
Before Width: | Height: | Size: 1.9 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 2.0 KiB |
Before Width: | Height: | Size: 7.6 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 2.7 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 2.5 KiB |
Before Width: | Height: | Size: 2.2 KiB |
Before Width: | Height: | Size: 2.6 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 10 KiB |
Before Width: | Height: | Size: 5.2 KiB |
Before Width: | Height: | Size: 4.7 KiB |
Before Width: | Height: | Size: 3.5 KiB |
Before Width: | Height: | Size: 3.1 KiB |
Before Width: | Height: | Size: 2.7 KiB |
Before Width: | Height: | Size: 3.4 KiB |
Before Width: | Height: | Size: 3.7 KiB |
Before Width: | Height: | Size: 3.2 KiB |
Before Width: | Height: | Size: 3.5 KiB |
Before Width: | Height: | Size: 7.0 KiB |
Before Width: | Height: | Size: 5.5 KiB |
Before Width: | Height: | Size: 3.6 KiB |
Before Width: | Height: | Size: 5.0 KiB |
Before Width: | Height: | Size: 5.6 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 1.3 KiB |
Before Width: | Height: | Size: 1.7 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 5.1 KiB |
Before Width: | Height: | Size: 4.5 KiB |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 1.5 KiB |